Your browser doesn't support javascript.
loading
Resolidified Chalcogen-Assisted Growth of Bilayer Semiconductors with Controlled Stacking Orders.
Wu, Qinke; He, Liqiong; Wang, Dan; Nong, Huiyu; Wang, Jingwei; Cai, Zhengyang; Zhao, Shilong; Zheng, Rongxu; Lai, Shen; Zhang, Rongjie; Feng, Qingliang; Liu, Bilu.
Afiliación
  • Wu Q; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • He L; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Wang D; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Nong H; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Wang J; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Cai Z; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Zhao S; Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
  • Zheng R; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Lai S; School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China.
  • Zhang R; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Feng Q; Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China.
  • Liu B; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
Small ; 20(2): e2305506, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37661344
ABSTRACT
Bilayer semiconductors have attracted much attention due to their stacking-order-dependent properties. However, as both 3R- and 2H-stacking are energetically stable at high temperatures, most of the high-temperature grown bilayer materials have random 3R- or 2H-stacking orders, leading to non-uniformity in optical and electrical properties. Here, a chemical vapor deposition method is developed to grow bilayer semiconductors with controlled stacking order by modulating the resolidified chalcogen precursors supply kinetics. Taking tungsten disulfide (WS2 ) as an example, pure 3R-stacking (100%) and 2H-stacking dominated (87.6%) bilayer WS2 are grown by using this method and both show high structural and optical quality and good uniformity. Importantly, the bilayer 3R-stacking WS2 shows higher field effect mobility than 2H-stacking samples, due to the difference in stacking order-dependent surface potentials. This method is universal for growing other bilayer semiconductors with controlled stacking orders including molybdenum disulfide and tungsten diselenide, paving the way to exploit stacking-order-dependent properties of these family of emerging bilayer materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article