Your browser doesn't support javascript.
loading
Visible-to-mid-IR tunable frequency comb in nanophotonics.
Roy, Arkadev; Ledezma, Luis; Costa, Luis; Gray, Robert; Sekine, Ryoto; Guo, Qiushi; Liu, Mingchen; Briggs, Ryan M; Marandi, Alireza.
Afiliación
  • Roy A; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Ledezma L; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Costa L; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA.
  • Gray R; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Sekine R; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Guo Q; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Liu M; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Briggs RM; Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
  • Marandi A; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA.
Nat Commun ; 14(1): 6549, 2023 Oct 17.
Article en En | MEDLINE | ID: mdl-37848411
ABSTRACT
Optical frequency comb is an enabling technology for a multitude of applications from metrology to ranging and communications. The tremendous progress in sources of optical frequency combs has mostly been centered around the near-infrared spectral region, while many applications demand sources in the visible and mid-infrared, which have so far been challenging to achieve, especially in nanophotonics. Here, we report widely tunable frequency comb generation using optical parametric oscillators in lithium niobate nanophotonics. We demonstrate sub-picosecond frequency combs tunable beyond an octave extending from 1.5 up to 3.3 µm with femtojoule-level thresholds on a single chip. We utilize the up-conversion of the infrared combs to generate visible frequency combs reaching 620 nm on the same chip. The ultra-broadband tunability and visible-to-mid-infrared spectral coverage of our source highlight a practical and universal path for the realization of efficient frequency comb sources in nanophotonics, overcoming their spectral sparsity.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos