Your browser doesn't support javascript.
loading
Experimental Quantum Channel Discrimination Using Metastable States of a Trapped Ion.
DeBry, Kyle; Sinanan-Singh, Jasmine; Bruzewicz, Colin D; Reens, David; Kim, May E; Roychowdhury, Matthew P; McConnell, Robert; Chuang, Isaac L; Chiaverini, John.
Afiliación
  • DeBry K; Department of Physics, Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Sinanan-Singh J; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA.
  • Bruzewicz CD; Department of Physics, Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Reens D; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA.
  • Kim ME; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA.
  • Roychowdhury MP; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA.
  • McConnell R; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA.
  • Chuang IL; Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02421, USA.
  • Chiaverini J; Department of Physics, Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett ; 131(17): 170602, 2023 Oct 27.
Article en En | MEDLINE | ID: mdl-37955505
We present experimental demonstrations of accurate and unambiguous single-shot discrimination between three quantum channels using a single trapped ^{40}Ca^{+} ion. The three channels cannot be distinguished unambiguously using repeated single channel queries, the natural classical analogue. We develop techniques for using the six-dimensional D_{5/2} state space for quantum information processing, and we implement protocols to discriminate quantum channel analogues of phase shift keying and amplitude shift keying data encodings used in classical radio communication. The demonstrations achieve discrimination accuracy exceeding 99% in each case, limited entirely by known experimental imperfections.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos