Your browser doesn't support javascript.
loading
Heavy water coupling gel for short-wave infrared photoacoustic imaging.
Salinas, Christopher M; Reichel, Eric; Gupta, Abhiman; Witte, Russell S.
Afiliación
  • Salinas CM; University of Arizona, College of Optical Sciences, Tucson, Arizona, United States.
  • Reichel E; University of Arizona, College of Optical Sciences, Tucson, Arizona, United States.
  • Gupta A; University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States.
  • Witte RS; University of Arizona, College of Optical Sciences, Tucson, Arizona, United States.
J Biomed Opt ; 28(11): 116001, 2023 Nov.
Article en En | MEDLINE | ID: mdl-38078156
ABSTRACT

Significance:

Changes in lipid, water, and collagen (LWC) content in tissue are associated with numerous medical abnormalities (cancer, atherosclerosis, and Alzheimer's disease). Standard imaging modalities are limited in resolution, specificity, and/or penetration for quantifying these changes. Short-wave infrared (SWIR) photoacoustic imaging (PAI) has the potential to overcome these challenges by exploiting the unique optical absorption properties of LWC>1000 nm.

Aim:

This study's aim is to harness SWIR PAI for mapping LWC changes in tissue. The focus lies in devising a reflection-mode PAI technique that surmounts current limitations related to SWIR light delivery.

Approach:

To enhance light delivery for reflection-mode SWIR PAI, we designed a deuterium oxide (D2O, "heavy water") gelatin (HWG) interface for opto-acoustic coupling, intended to significantly improve light transmission above 1200 nm.

Results:

HWG permits light delivery >1 mJ up to 1850 nm, which was not possible with water-based coupling (>1 mJ light delivery up to 1350 nm). PAI using the HWG interface and the Visualsonics Vevo LAZR-X reveals a signal increase up to 24 dB at 1720 nm in lipid-rich regions.

Conclusions:

By overcoming barriers related to light penetration, the HWG coupling interface enables accurate quantification/monitoring of biomarkers like LWC using reflection-mode PAI. This technological stride offers potential for tracking changes in chronic diseases (in vivo) and evaluating their responses to therapeutic interventions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Fotoacústicas Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Fotoacústicas Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos