Your browser doesn't support javascript.
loading
Phospholipid Bilayer Integrated with Multifunctional Peptide for Ultralow-Fouling Electrochemical Detection of HER2 in Human Serum.
Li, Yang; Han, Rui; Feng, Jiahui; Li, Jialu; Luo, Xiliang.
Afiliación
  • Li Y; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Han R; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Feng J; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Li J; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Luo X; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
Anal Chem ; 96(1): 531-537, 2024 01 09.
Article en En | MEDLINE | ID: mdl-38115190
ABSTRACT
Electrochemical biosensing devices face challenges of severe nonspecific adsorption in complex biological matrices for the detection of biomarkers, and thus, there is a significant need for sensitive and antifouling biosensors. Herein, a sensitive electrochemical biosensor with antifouling and antiprotease hydrolysis ability was constructed for the detection of human epidermal growth factor receptor 2 (HER2) by integrating multifunctional branched peptides with distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) self-assembled bilayer. The peptide was designed to possess antifouling, antiprotease hydrolysis, and HER2 recognizing capabilities. Molecular dynamics simulations demonstrated that the DSPE was able to effectively self-assemble into a bilayer, and the water contact angle and electrochemical experiments verified that the combination of peptide with the DSPE-PEG bilayer was conducive to enhancing the hydrophilicity and antifouling performance of the modified surface. The constructed HER2 biosensor exhibited excellent antifouling and antiprotease hydrolysis capabilities, and it possessed a linear range of 1.0 pg mL-1 to 1.0 µg mL-1, and a limit of detection of 0.24 pg mL-1. In addition, the biosensor was able to detect HER2 in real human serum samples without significant biofouling, and the assaying results were highly consistent with those measured by the enzyme-linked immunosorbent assay (ELISA), indicating the promising potential of the antifouling biosensor for clinical diagnosis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Incrustaciones Biológicas Límite: Humans Idioma: En Revista: Anal Chem / Anal. chem / Analytical chemistry Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Incrustaciones Biológicas Límite: Humans Idioma: En Revista: Anal Chem / Anal. chem / Analytical chemistry Año: 2024 Tipo del documento: Article País de afiliación: China