Your browser doesn't support javascript.
loading
Machine learning interpretable models of cell mechanics from protein images.
Schmitt, Matthew S; Colen, Jonathan; Sala, Stefano; Devany, John; Seetharaman, Shailaja; Caillier, Alexia; Gardel, Margaret L; Oakes, Patrick W; Vitelli, Vincenzo.
Afiliación
  • Schmitt MS; James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA; Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637, USA.
  • Colen J; James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA; Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637, USA.
  • Sala S; Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
  • Devany J; James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA.
  • Seetharaman S; James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA.
  • Caillier A; Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
  • Gardel ML; James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA. Electronic address: gardel@uchicago.edu.
  • Oakes PW; Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA. Electronic address: poakes@luc.edu.
  • Vitelli V; James Franck Institute, University of Chicago, Chicago, IL 60637, USA; Department of Physics, University of Chicago, Chicago, IL 60637, USA; Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637, USA. Electronic address: vitelli@uchicago.edu.
Cell ; 187(2): 481-494.e24, 2024 01 18.
Article en En | MEDLINE | ID: mdl-38194965
ABSTRACT
Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas del Citoesqueleto / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas del Citoesqueleto / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos