Your browser doesn't support javascript.
loading
A Radical Approach for Asymmetric α-C-H Addition of N-Sulfonyl Benzylamines to Aldehydes.
Hu, Hui; Shi, Zhaoxin; Guo, Xiaochong; Zhang, Feng-Hua; Wang, Zhaobin.
Afiliación
  • Hu H; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China.
  • Shi Z; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China.
  • Guo X; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China.
  • Zhang FH; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China.
  • Wang Z; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China.
J Am Chem Soc ; 146(8): 5316-5323, 2024 Feb 28.
Article en En | MEDLINE | ID: mdl-38364304
ABSTRACT
Efficient synthesis of enantioenriched amines is of great importance due to their significant synthetic and biological applications. Photoredox-mediated asymmetric α-amino C(sp3)-H functionalization offers an atom-economical and sustainable approach to access chiral amines. However, the development of analogous reactions is in its early stages, generally affording chiral amines with a single stereocenter. Herein, we present a novel synergistic triple-catalysis approach for the asymmetric α-C-H addition of readily available N-sulfonyl amines to aldehydes under mild conditions. This method allows for the efficient synthesis of a diverse array of valuable ß-amino alcohols bearing vicinal stereocenters. Unlike previous reports, our protocol employs a radical approach using earth-abundant Cr catalysis. Quinuclidine plays a dual role by facilitating highly selective hydrogen-atom transfer to generate α-amino radicals and promoting the dissociation of the Cr-O bond, which is crucial for the overall catalytic cycle as evidenced by control, NMR, and DFT experiments. Preliminary mechanistic studies, including radical trapping, nonlinear effect, Stern-Volmer plot, kinetic isotope effect, and Hammett plot, offer valuable insights into the reaction pathway.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: China