Your browser doesn't support javascript.
loading
EGR1 mediates MDR1 transcriptional activity regulating gemcitabine resistance in pancreatic cancer.
Yang, Zhe; Chen, Feiran; Wei, Dafu; Chen, Fengping; Jiang, Haixing; Qin, Shanyu.
Afiliación
  • Yang Z; Department of Gastroenterology, Guangxi Medical University Cancer Hospital, No 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
  • Chen F; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
  • Wei D; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
  • Chen F; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
  • Jiang H; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China. gxjianghx@163.com.
  • Qin S; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China. qinshanyu@gxmu.edu.cn.
BMC Cancer ; 24(1): 268, 2024 Feb 26.
Article en En | MEDLINE | ID: mdl-38408959
ABSTRACT

BACKGROUND:

Gemcitabine is a cornerstone drug for the treatment of all stages of pancreatic cancer and can prolong the survival of patients with pancreatic cancer, but resistance to gemcitabine in pancreatic cancer patients hinders its efficacy. The overexpression of Early growth response 1(EGR1) in pancreatic ductal adenocarcinoma as a mechanism of gemcitabine chemoresistance in pancreatic cancer has not been explored. The major mechanisms of gemcitabine chemoresistance are related to drug uptake, metabolism, and action. One of the common causes of tumor multidrug resistance (MDR) to chemotherapy in cancer cells is that transporter proteins increase intracellular drug efflux and decrease drug concentrations by inducing anti-apoptotic mechanisms. It has been reported that gemcitabine binds to MDR1 with high affinity. The purpose of this research was to investigate the potential mechanisms by which EGR1 associates with MDR1 to regulate gemcitabine resistance in pancreatic cancer cells.

METHODS:

The following in vitro and in vivo techniques were used in this research to explore the potential mechanisms by which EGR1 binds to MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. Cell culture; in vitro and in vivo study of EGR1 function by loss of function analysis. Binding of EGR1 to the MDR1 promoter was detected using the ChIP assay. qRT-PCR, Western blot assays to detect protein and mRNA expression; use of Annexin V apoptosis detection assay to test apoptosis; CCK8, Edu assay to test cell proliferation viability. The animal model of pancreatic cancer subcutaneous allograft was constructed and the tumours were stained with hematoxylin eosin and Ki-67 expression was detected using immunohistochemistry.

FINDINGS:

We revealed that EGR1 expression was increased in different pancreatic cancer cell lines compared to normal pancreatic ductal epithelial cells. Moreover, gemcitabine treatment induced upregulation of EGR1 expression in a dose- and time-dependent manner. EGR1 is significantly enriched in the MDR1 promoter sequence.Upon knockdown of EGR1, cell proliferation was impaired in CFPAC-1 and PANC-1 cell lines, apoptosis was enhanced and MDR1 expression was decreased, thereby partially reversing gemcitabine chemoresistance. In animal experiments, knockdown of EGR1 enhanced the inhibitory effect of gemcitabine on tumor growth compared with the sh-NC group.

CONCLUSIONS:

Our study suggests that EGR1 may be involved in the regulation of MDR1 to enhance gemcitabine resistance in pancreatic cancer cells. EGR1 could be a novel therapeutic target to overcome gemcitabine resistance in pancreatic cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Carcinoma Ductal Pancreático Límite: Animals / Humans Idioma: En Revista: BMC Cancer Asunto de la revista: NEOPLASIAS Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Carcinoma Ductal Pancreático Límite: Animals / Humans Idioma: En Revista: BMC Cancer Asunto de la revista: NEOPLASIAS Año: 2024 Tipo del documento: Article