Your browser doesn't support javascript.
loading
Increased panicle nitrogen application improves rice yield by alleviating high-temperature damage during panicle initiation to anther development.
Hu, Qiuqian; Yan, Na; Cui, Kehui; Li, Guohui; Wang, Wencheng; Huang, Jianliang; Peng, Shaobing.
Afiliación
  • Hu Q; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Yan N; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Cui K; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Li G; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Wang W; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Huang J; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  • Peng S; National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Physiol Plant ; 176(2): e14230, 2024.
Article en En | MEDLINE | ID: mdl-38413388
ABSTRACT
The grain yield is closely associated with spikelet fertility in rice (Oryza sativa L.) under high temperatures, and nitrogen (N) plays a crucial role in yield formation. To investigate the effect of panicle N application on yield formation under high temperatures at the panicle initiation stage, two rice varieties [Liangyoupeijiu (LYPJ, heat susceptible) and Shanyou63 (SY63, heat tolerant)] were grown and exposed to high daytime temperature (HT) and control temperature (Control) during the panicle initiation stage. Low (LPN) and high (HPN) panicle N applications were conducted. HT markedly decreased the yields by 87% at LPN and 48% at HPN in LYPJ and 31% at LPN and 36% at HPN in SY63. The decrease in grain yield under HT was primarily attributed to the decline in spikelet fertility, HPN increased spikelet fertility. HT resulted in the abnormal development of anthers, which included disordered, enlarged, and broken anther wall layers, degraded and irregularly shaped microspores, delayed tapetum degradation, less vacuolated microspores per locule, abnormal and aborted pollen grains; however, HPN improved the development of anthers under HT, particularly in LYPJ. A high rate of evapotranspiration resulted in an approximately 1°C decrease in panicle temperatures at HPN compared with that at LPN in both varieties under HT. Overall, these results demonstrate that the increased panicle N application favors normal anther development in LYPJ by decreasing the panicle temperature, which results in high pollen viability and spikelet fertility, and consequently less yield loss under HT.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza Idioma: En Revista: Physiol Plant / Physiol. plant / Physiologia plantarum Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza Idioma: En Revista: Physiol Plant / Physiol. plant / Physiologia plantarum Año: 2024 Tipo del documento: Article País de afiliación: China