Your browser doesn't support javascript.
loading
Effects of the plastic additive 2,4-di-tert-butylphenol on intestinal microbiota of zebrafish.
Yang, Yongmeng; Yan, Chen; Li, Aifeng; Qiu, Jiangbing; Yan, Wenhui; Dang, Hui.
Afiliación
  • Yang Y; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Yan C; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Li A; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China. Electronic address: lafouc@ouc.edu.cn.
  • Qiu J; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
  • Yan W; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Dang H; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
J Hazard Mater ; 469: 133987, 2024 May 05.
Article en En | MEDLINE | ID: mdl-38461668
ABSTRACT
Plastic additives such as the antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) have been widely detected in aquatic environments, over a wide range of concentrations reaching 300 µg/L in surface water, potentially threatening the health of aquatic organisms and ecosystems. However, knowledge of the specific effects of 2,4-DTBP on aquatic vertebrates is still limited. In this study, adult zebrafish were exposed to different concentrations of 2,4-DTBP (0, 0.01, 0.1 and 1.0 mg/L) for 21 days in the laboratory. The amplicon sequencing results indicated that the diversity and composition of the zebrafish gut microbiota were significantly changed by 2,4-DTBP, with a shift in the dominant flora to more pathogenic genera. Exposure to 2,4-DTBP at 0.1 and 1.0 mg/L significantly increased the body weight and length of zebrafish, suggesting a biological stress response. Structural assembly defects were also observed in the intestinal tissues of zebrafish exposed to 2,4-DTBP, including autolysis of intestinal villi, adhesions and epithelial detachment of intestinal villi, as well as inflammation. The transcriptional expression of some genes showed that 2,4-DTBP adversely affected protein digestion and absorption, glucose metabolism and lipid metabolism. These results are consistent with the PICRUSt2 functional prediction analysis of intestinal microbiota of zebrafish exposed to 2,4-DTBP. This study improves our understanding of the effects of 2,4-DTBP on the health of aquatic vertebrates and ecosystems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pez Cebra / Microbioma Gastrointestinal Límite: Animals Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pez Cebra / Microbioma Gastrointestinal Límite: Animals Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China