Your browser doesn't support javascript.
loading
Image quality and metal artifact reduction in total hip arthroplasty CT: deep learning-based algorithm versus virtual monoenergetic imaging and orthopedic metal artifact reduction.
Selles, Mark; Wellenberg, Ruud H H; Slotman, Derk J; Nijholt, Ingrid M; van Osch, Jochen A C; van Dijke, Kees F; Maas, Mario; Boomsma, Martijn F.
Afiliación
  • Selles M; Department of Radiology, Isala, 8025 AB, Zwolle, the Netherlands. m.selles@isala.nl.
  • Wellenberg RHH; Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ, Amsterdam, the Netherlands. m.selles@isala.nl.
  • Slotman DJ; Amsterdam Movement Sciences, 1081 BT, Amsterdam, the Netherlands. m.selles@isala.nl.
  • Nijholt IM; Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ, Amsterdam, the Netherlands.
  • van Osch JAC; Amsterdam Movement Sciences, 1081 BT, Amsterdam, the Netherlands.
  • van Dijke KF; Department of Radiology, Isala, 8025 AB, Zwolle, the Netherlands.
  • Maas M; Department of Radiology, Isala, 8025 AB, Zwolle, the Netherlands.
  • Boomsma MF; Department of Medical Physics, Isala, 8025 AB, Zwolle, the Netherlands.
Eur Radiol Exp ; 8(1): 31, 2024 Mar 14.
Article en En | MEDLINE | ID: mdl-38480603
ABSTRACT

BACKGROUND:

To compare image quality, metal artifacts, and diagnostic confidence of conventional computed tomography (CT) images of unilateral total hip arthroplasty patients (THA) with deep learning-based metal artifact reduction (DL-MAR) to conventional CT and 130-keV monoenergetic images with and without orthopedic metal artifact reduction (O-MAR).

METHODS:

Conventional CT and 130-keV monoenergetic images with and without O-MAR and DL-MAR images of 28 unilateral THA patients were reconstructed. Image quality, metal artifacts, and diagnostic confidence in bone, pelvic organs, and soft tissue adjacent to the prosthesis were jointly scored by two experienced musculoskeletal radiologists. Contrast-to-noise ratios (CNR) between bladder and fat and muscle and fat were measured. Wilcoxon signed-rank tests with Holm-Bonferroni correction were used.

RESULTS:

Significantly higher image quality, higher diagnostic confidence, and less severe metal artifacts were observed on DL-MAR and images with O-MAR compared to images without O-MAR (p < 0.001 for all comparisons). Higher image quality, higher diagnostic confidence for bone and soft tissue adjacent to the prosthesis, and less severe metal artifacts were observed on DL-MAR when compared to conventional images and 130-keV monoenergetic images with O-MAR (p ≤ 0.014). CNRs were higher for DL-MAR and images with O-MAR compared to images without O-MAR (p < 0.001). Higher CNRs were observed on DL-MAR images compared to conventional images and 130-keV monoenergetic images with O-MAR (p ≤ 0.010).

CONCLUSIONS:

DL-MAR showed higher image quality, diagnostic confidence, and superior metal artifact reduction compared to conventional CT images and 130-keV monoenergetic images with and without O-MAR in unilateral THA patients. RELEVANCE STATEMENT DL-MAR resulted into improved image quality, stronger reduction of metal artifacts, and improved diagnostic confidence compared to conventional and virtual monoenergetic images with and without metal artifact reduction, bringing DL-based metal artifact reduction closer to clinical application. KEY POINTS • Metal artifacts introduced by total hip arthroplasty hamper radiologic assessment on CT. • A deep-learning algorithm (DL-MAR) was compared to dual-layer CT images with O-MAR. • DL-MAR showed best image quality and diagnostic confidence. • Highest contrast-to-noise ratios were observed on the DL-MAR images.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Artroplastia de Reemplazo de Cadera / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Eur Radiol Exp Año: 2024 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Artroplastia de Reemplazo de Cadera / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Eur Radiol Exp Año: 2024 Tipo del documento: Article País de afiliación: Países Bajos