Probing PT-Symmetry Breaking of Non-Hermitian Topological Photonic States via Strong Photon-Magnon Coupling.
Phys Rev Lett
; 132(15): 156901, 2024 Apr 12.
Article
en En
| MEDLINE
| ID: mdl-38682991
ABSTRACT
Light-matter interaction is crucial to both understanding fundamental phenomena and developing versatile applications. Strong coupling, robustness, and controllability are the three most important aspects in realizing light-matter interactions. Topological and non-Hermitian photonics have provided frameworks for robustness and control flexibility, respectively. How to engineer the properties of the edge state such as photonic density of state by using non-Hermiticity while ensuring topological protection has not been fully studied. Here we construct a parity-time-symmetric dimerized photonic lattice and probe the spontaneous PT-symmetry breaking of the edge states by utilizing the strong coupling between the photonic mode and a spin ensemble. Our Letter presents an accurate and almost noninvasive approach for investigating non-Hermitian topological states, while also offering methodologies for the implementation and manipulation of topological light-matter interactions.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
China