Your browser doesn't support javascript.
loading
Stomatal maturomics: hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes.
Peng, Yuming; Liu, Yi; Wang, Yifan; Geng, Zhenxing; Qin, Yue; Ma, Shisong.
Afiliación
  • Peng Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
  • Liu Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
  • Wang Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
  • Geng Z; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
  • Qin Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
  • Ma S; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China; School of Data Science, University of Science and Tec
J Genet Genomics ; 2024 May 19.
Article en En | MEDLINE | ID: mdl-38768655
ABSTRACT
Stomata play critical roles in gas exchange and immunity to pathogens. While many genes regulating early stomatal development up to the production of young guard cells (GCs) have been identified in Arabidopsis, much less is known about how young GCs develop into mature functional stomata. Here we perform a maturomics study on stomata, with "maturomics" defined as omics analysis of the maturation process of a tissue or organ. We develop an integrative scheme to analyze three public stomata-related single-cell RNA-seq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation. The list, termed sc_586, is enriched with known regulators of stomatal maturation and functions. To validate the reliability of the dataset, we selected two candidate G2-like transcription factor genes, MYS1 and MYS2, to investigate their roles in stomata. These two genes redundantly regulate the size and hoop rigidity of mature GCs, and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures. Taken together, our results provide a valuable list of genes for studying GC maturation and function formation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Genet Genomics Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Genet Genomics Año: 2024 Tipo del documento: Article País de afiliación: China