Your browser doesn't support javascript.
loading
Tensor modeling of MRSA bacteremia cytokine and transcriptional patterns reveals coordinated, outcome-associated immunological programs.
Chin, Jackson L; Tan, Zhixin Cyrillus; Chan, Liana C; Ruffin, Felicia; Parmar, Rajesh; Ahn, Richard; Taylor, Scott D; Bayer, Arnold S; Hoffmann, Alexander; Fowler, Vance G; Reed, Elaine F; Yeaman, Michael R; Meyer, Aaron S.
Afiliación
  • Chin JL; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90024, USA.
  • Tan ZC; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90024, USA.
  • Chan LC; The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
  • Ruffin F; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Parmar R; Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
  • Ahn R; Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
  • Taylor SD; Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
  • Bayer AS; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Hoffmann A; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
  • Fowler VG; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90024, USA.
  • Reed EF; The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
  • Yeaman MR; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Meyer AS; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
PNAS Nexus ; 3(5): pgae185, 2024 May.
Article en En | MEDLINE | ID: mdl-38779114
ABSTRACT
Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a common and life-threatening infection that imposes up to 30% mortality even when appropriate therapy is used. Despite in vitro efficacy determined by minimum inhibitory concentration breakpoints, antibiotics often fail to resolve these infections in vivo, resulting in persistent MRSA bacteremia. Recently, several genetic, epigenetic, and proteomic correlates of persistent outcomes have been identified. However, the extent to which single variables or their composite patterns operate as independent predictors of outcome or reflect shared underlying mechanisms of persistence is unknown. To explore this question, we employed a tensor-based integration of host transcriptional and cytokine datasets across a well-characterized cohort of patients with persistent or resolving MRSA bacteremia outcomes. This method yielded high correlative accuracy with outcomes and immunologic signatures united by transcriptomic and cytokine datasets. Results reveal that patients with persistent MRSA bacteremia (PB) exhibit signals of granulocyte dysfunction, suppressed antigen presentation, and deviated lymphocyte polarization. In contrast, patients with resolving bacteremia (RB) heterogeneously exhibit correlates of robust antigen-presenting cell trafficking and enhanced neutrophil maturation corresponding to appropriate T lymphocyte polarization and B lymphocyte response. These results suggest that transcriptional and cytokine correlates of PB vs. RB outcomes are complex and may not be disclosed by conventional modeling. In this respect, a tensor-based integration approach may help to reveal consensus molecular and cellular mechanisms and their biological interpretation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos