Your browser doesn't support javascript.
loading
Ozone risk assessment with free-air controlled exposure (FACE) experiments: A critical revisit.
Hoshika, Yasutomo; Agathokleous, Evgenios; Moura, Barbara Baesso; Paoletti, Elena.
Afiliación
  • Hoshika Y; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy. Electronic address: yasutomo.hoshika@cnr.it.
  • Agathokleous E; School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China.
  • Moura BB; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
  • Paoletti E; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
Environ Res ; 255: 119215, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-38782333
ABSTRACT
Since risk assessments of tropospheric ozone (O3) are crucial for agricultural and forestry sectors, there is a growing body for realistic assessments by a stomatal flux-based approach in Free-Air Controlled Exposure (FACE) facilities. Ozone risks are normally described as relative risks (RRs), which are calculated by assuming the biomass or yield at zero O3 dose as "reference". However, the estimation of the reference biomass or yield is challenging due to a lack of O3-clean-air treatment at the FACEs and the extrapolation without data in a low O3 range increases the bias for estimating the reference values. Here, we reviewed a current methodology for the risk assessment at FACEs and presented a simple and effective way ("modified Paoletti's approach") of defining RRs just using biomass or yield data with a range of expected impacts under the FACE conditions hypothesizing three possible scenarios based on prediction limits using 95% credible intervals (CI) (1. Best fit using the intercept as reference, 2. Optimistic scenario using a lower CI and 3. Worst scenario using an upper CI). As a result, O3-sensitive species show a relatively narrow effect range (optimistic vs. worst scenario) whereas a wide range of response may be possibly taken in resistant species. Showing a possible effect range allows for a comprehensive understanding of the potential risks and its uncertainties related to a species sensitivity to O3. As a supporting approach, we also recommend to use scientifically relevant tools (i.e., ethylenediurea treatments; mechanistic plant models) for strengthening the obtained results for the RRs against O3. Interestingly, the moderately sensitive or resistant species showed non-linear rather than linear dose-response relationships, suggesting a need for the flexible functional form for the risk assessment to properly describe the complex plant response such as hormesis, which depends on their plasticity to O3 stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ozono Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ozono Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article