Your browser doesn't support javascript.
loading
Membraneless channels sieve cations in ammonia-oxidizing marine archaea.
von Kügelgen, Andriko; Cassidy, C Keith; van Dorst, Sofie; Pagani, Lennart L; Batters, Christopher; Ford, Zephyr; Löwe, Jan; Alva, Vikram; Stansfeld, Phillip J; Bharat, Tanmay A M.
Afiliación
  • von Kügelgen A; Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
  • Cassidy CK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
  • van Dorst S; Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA.
  • Pagani LL; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
  • Batters C; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
  • Ford Z; Protein and Nucleic Acid Chemistry Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
  • Löwe J; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
  • Alva V; Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
  • Stansfeld PJ; Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
  • Bharat TAM; School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK.
Nature ; 630(8015): 230-236, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38811725
ABSTRACT
Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Membrana Celular / Archaea / Organismos Acuáticos / Amoníaco Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Membrana Celular / Archaea / Organismos Acuáticos / Amoníaco Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido