Your browser doesn't support javascript.
loading
Competition between Self-Assembly and Phase Separation Governs High-Temperature Condensation of a DNA Liquid.
Hegde, Omkar; Li, Tianhao; Sharma, Anjali; Borja, Marco; Jacobs, William M; Rogers, W Benjamin.
Afiliación
  • Hegde O; Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
  • Li T; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
  • Sharma A; Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
  • Borja M; Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
  • Jacobs WM; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
  • Rogers WB; Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
Phys Rev Lett ; 132(20): 208401, 2024 May 17.
Article en En | MEDLINE | ID: mdl-38829088
ABSTRACT
In many biopolymer solutions, attractive interactions that stabilize finite-sized clusters at low concentrations also promote phase separation at high concentrations. Here we study a model biopolymer system that exhibits the opposite behavior, whereby self-assembly of DNA oligonucleotides into finite-sized, stoichiometric clusters tends to inhibit phase separation. We first use microfluidics-based experiments to map a novel phase transition in which the oligonucleotides condense as the temperature increases at high concentrations of divalent cations. We then show that a theoretical model of competition between self-assembly and phase separation quantitatively predicts changes in experimental phase diagrams arising from DNA sequence perturbations. Our results point to a general mechanism by which self-assembly shapes phase boundaries in complex biopolymer solutions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN / Transición de Fase / Modelos Químicos Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN / Transición de Fase / Modelos Químicos Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos