Your browser doesn't support javascript.
loading
Membrane depolarization mediates both the inhibition of neural activity and cell-type-differences in response to high-frequency stimulation.
Lee, Jae-Ik; Werginz, Paul; Kameneva, Tatiana; Im, Maesoon; Fried, Shelley I.
Afiliación
  • Lee JI; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. jaeikjq@gmail.com.
  • Werginz P; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Kameneva T; Institute of Biomedical Electronics, TU Wien, Vienna, Austria.
  • Im M; School of Science, Computing, and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia.
  • Fried SI; Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia.
Commun Biol ; 7(1): 734, 2024 Jun 18.
Article en En | MEDLINE | ID: mdl-38890481
ABSTRACT
Neuromodulation using high frequency (>1 kHz) electric stimulation (HFS) enables preferential activation or inhibition of individual neural types, offering the possibility of more effective treatments across a broad spectrum of neurological diseases. To improve effectiveness, it is important to better understand the mechanisms governing activation and inhibition with HFS so that selectivity can be optimized. In this study, we measure the membrane potential (Vm) and spiking responses of ON and OFF α-sustained retinal ganglion cells (RGCs) to a wide range of stimulus frequencies (100-2500 Hz) and amplitudes (10-100 µA). Our findings indicate that HFS induces shifts in Vm, with both the strength and polarity of the shifts dependent on the stimulus conditions. Spiking responses in each cell directly correlate with the shifts in Vm, where strong depolarization leads to spiking suppression. Comparisons between the two cell types reveal that ON cells are more depolarized by a given amplitude of HFS than OFF cells-this sensitivity difference enables the selective targeting. Computational modeling indicates that ion-channel dynamics largely account for the shifts in Vm, suggesting that a better understanding of the differences in ion-channel properties across cell types may improve the selectivity and ultimately, enhance HFS-based neurostimulation strategies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Ganglionares de la Retina / Estimulación Eléctrica / Potenciales de la Membrana Límite: Animals Idioma: En Revista: Commun Biol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Ganglionares de la Retina / Estimulación Eléctrica / Potenciales de la Membrana Límite: Animals Idioma: En Revista: Commun Biol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos