In situ 3D crystallographic characterization of deformation-induced martensitic transformation in a metastable Fe-Cr-Ni austenitic alloy by X-ray microtomography.
Sci Rep
; 14(1): 14445, 2024 Jun 24.
Article
en En
| MEDLINE
| ID: mdl-38910158
ABSTRACT
Excellent strength-ductility balance in metastable Fe-Cr-Ni austenitic alloys stems from phase transformation from austenite (fcc structure) to α' martensite (bcc structure) during deformation, namely deformation-induced α' martensitic transformation (DIMT). Here, DIMT in a metastable Fe-17Cr-7Ni austenitic alloy was detected in situ and characterized in three dimensions (3D) by employing synchrotron radiation X-ray microtomography. This technique utilizes refraction contrast, which is attributable to the presence of phase boundaries between the parent austenite and the newly formed α' martensite phase. By combining microtomography and position-sensitive X-ray diffraction, we succeeded in crystallographically identifying multiple α' martensite phases continuously transformed in four groups from a single parent austenitic phase.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Sci Rep
Año:
2024
Tipo del documento:
Article
País de afiliación:
Japón