Your browser doesn't support javascript.
loading
Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers.
Zhang, Weihong; Geng, Jun; Sun, Mengge; Jiang, Chunxia; Lin, Hui; Chen, Haiyang; Yang, Yuyi.
Afiliación
  • Zhang W; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of
  • Geng J; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of
  • Sun M; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China.
  • Jiang C; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 2100
  • Lin H; Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China. Electronic address: linhui@zaas.ac.cn.
  • Chen H; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
  • Yang Y; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of
Environ Res ; 259: 119562, 2024 Jul 04.
Article en En | MEDLINE | ID: mdl-38971360
ABSTRACT
Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs ß diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article