Your browser doesn't support javascript.
loading
Alterations of resting-state network dynamics in Alzheimer's disease based on leading eigenvector dynamics analysis.
Yang, Yan-Li; Liu, Yu-Xuan; Wei, Jing; Guo, Qi-Li; Hao, Zhi-Peng; Xue, Jia-Yue; Liu, Jin-Yi; Guo, Hao; Li, Yao.
Afiliación
  • Yang YL; Taiyuan University of Technology, Taiyuan, China.
  • Liu YX; Taiyuan University of Technology, Taiyuan, China.
  • Wei J; Shanxi University of Finance and Economics, Taiyuan, China.
  • Guo QL; Taiyuan University of Technology, Taiyuan, China.
  • Hao ZP; Taiyuan University of Technology, Taiyuan, China.
  • Xue JY; Shanxi University of Finance and Economics, Taiyuan, China.
  • Liu JY; Taiyuan University of Technology, Taiyuan, China.
  • Guo H; Taiyuan University of Technology, Taiyuan, China.
  • Li Y; Taiyuan University of Technology, Taiyuan, China.
J Neurophysiol ; 2024 Jul 17.
Article en En | MEDLINE | ID: mdl-39015075
ABSTRACT
Alzheimer's disease (AD) is a neurodegenerative disease, and mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia. Early detection of MCI can help slow down the progression of AD. At present, there are few studies exploring the characteristics of abnormal dynamic brain activity in AD. This article uses a method called Leading Eigenvector Dynamics Analysis (LEiDA) to study resting-state functional magnetic resonance imaging (rs-fMRI) data of AD, MCI, and cognitively normal (CN) participants. By identifying repetitive states of phase coherence, inter group differences in brain dynamic activity indicators are examined. And the neurobehavioral scales were used to assess the relationship between abnormal dynamic activities and cognitive function. The results showed that in the indicators of occurrence probability and lifetime, the globally synchronized state of the patient group decreased. The activity state of the limbic regions significantly detected the difference between AD and the other two groups. Compared to CN, AD and MCI have varying degrees of increase in default and visual regions activity states. In addition, in the analysis related to the cognitive scales, it was found that individuals with poorer cognitive abilities were less active in the globally synchronized state, and more active in limbic regions activity state and visual regions activity state. Taken together, these findings reveal abnormal dynamic activity of resting-state networks in patients with AD and MCI, provide new insights into the dynamic analysis of brain networks, and contribute to a deeper understanding of abnormal spatial dynamic patterns in AD patients.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Neurophysiol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Neurophysiol Año: 2024 Tipo del documento: Article País de afiliación: China