Your browser doesn't support javascript.
loading
Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study.
Corponi, Filippo; Li, Bryan M; Anmella, Gerard; Valenzuela-Pascual, Clàudia; Mas, Ariadna; Pacchiarotti, Isabella; Valentí, Marc; Grande, Iria; Benabarre, Antoni; Garriga, Marina; Vieta, Eduard; Young, Allan H; Lawrie, Stephen M; Whalley, Heather C; Hidalgo-Mazzei, Diego; Vergari, Antonio.
Afiliación
  • Corponi F; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.
  • Li BM; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.
  • Anmella G; The Alan Turing Institute, London, United Kingdom.
  • Valenzuela-Pascual C; Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Hospital Clínic de Barcelona, Barcelona, Spain.
  • Mas A; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
  • Pacchiarotti I; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
  • Valentí M; Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
  • Grande I; Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Hospital Clínic de Barcelona, Barcelona, Spain.
  • Benabarre A; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
  • Garriga M; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
  • Vieta E; Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
  • Young AH; Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Hospital Clínic de Barcelona, Barcelona, Spain.
  • Lawrie SM; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
  • Whalley HC; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
  • Hidalgo-Mazzei D; Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
  • Vergari A; Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Hospital Clínic de Barcelona, Barcelona, Spain.
JMIR Mhealth Uhealth ; 12: e55094, 2024 Jul 17.
Article en En | MEDLINE | ID: mdl-39018100
ABSTRACT

BACKGROUND:

Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of the worldwide disease burden. However, collecting and annotating wearable data is resource intensive. Studies of this kind can thus typically afford to recruit only a few dozen patients. This constitutes one of the major obstacles to applying modern supervised machine learning techniques to MD detection.

OBJECTIVE:

In this paper, we overcame this data bottleneck and advanced the detection of acute MD episodes from wearables' data on the back of recent advances in self-supervised learning (SSL). This approach leverages unlabeled data to learn representations during pretraining, subsequently exploited for a supervised task.

METHODS:

We collected open access data sets recording with the Empatica E4 wristband spanning different, unrelated to MD monitoring, personal sensing tasks-from emotion recognition in Super Mario players to stress detection in undergraduates-and devised a preprocessing pipeline performing on-/off-body detection, sleep/wake detection, segmentation, and (optionally) feature extraction. With 161 E4-recorded subjects, we introduced E4SelfLearning, the largest-to-date open access collection, and its preprocessing pipeline. We developed a novel E4-tailored transformer (E4mer) architecture, serving as the blueprint for both SSL and fully supervised learning; we assessed whether and under which conditions self-supervised pretraining led to an improvement over fully supervised baselines (ie, the fully supervised E4mer and pre-deep learning algorithms) in detecting acute MD episodes from recording segments taken in 64 (n=32, 50%, acute, n=32, 50%, stable) patients.

RESULTS:

SSL significantly outperformed fully supervised pipelines using either our novel E4mer or extreme gradient boosting (XGBoost) n=3353 (81.23%) against n=3110 (75.35%; E4mer) and n=2973 (72.02%; XGBoost) correctly classified recording segments from a total of 4128 segments. SSL performance was strongly associated with the specific surrogate task used for pretraining, as well as with unlabeled data availability.

CONCLUSIONS:

We showed that SSL, a paradigm where a model is pretrained on unlabeled data with no need for human annotations before deployment on the supervised target task of interest, helps overcome the annotation bottleneck; the choice of the pretraining surrogate task and the size of unlabeled data for pretraining are key determinants of SSL success. We introduced E4mer, which can be used for SSL, and shared the E4SelfLearning collection, along with its preprocessing pipeline, which can foster and expedite future research into SSL for personal sensing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Trastornos del Humor / Aprendizaje Automático Supervisado / Dispositivos Electrónicos Vestibles Límite: Adult / Female / Humans / Male Idioma: En Revista: JMIR Mhealth Uhealth Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Trastornos del Humor / Aprendizaje Automático Supervisado / Dispositivos Electrónicos Vestibles Límite: Adult / Female / Humans / Male Idioma: En Revista: JMIR Mhealth Uhealth Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido