Humans flexibly integrate social information despite interindividual differences in reward.
Proc Natl Acad Sci U S A
; 121(39): e2404928121, 2024 Sep 24.
Article
en En
| MEDLINE
| ID: mdl-39302964
ABSTRACT
There has been much progress in understanding human social learning, including recent studies integrating social information into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and demonstrator, overlooking the diversity of social information in real-world interactions. We address this gap by introducing a socially correlated bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more realistic conditions. Our Social Generalization (SG) model, tested through evolutionary simulations and two online experiments, outperforms existing models by incorporating social information into the generalization process, but treating it as noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed, with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration. This research highlights the flexibility of humans' social learning, allowing us to integrate social information from others with different preferences, skills, or goals.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Recompensa
/
Aprendizaje Social
Límite:
Adult
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2024
Tipo del documento:
Article
País de afiliación:
Alemania