Your browser doesn't support javascript.
loading
Early detection of ovarian cancer using cell-free DNA fragmentomes and protein biomarkers.
Medina, Jamie E; Annapragada, Akshaya V; Lof, Pien; Short, Sarah; Bartolomucci, Adrianna L; Mathios, Dimitrios; Koul, Shashikant; Niknafs, Noushin; Noe, Michael; Foda, Zachariah H; Bruhm, Daniel C; Hruban, Carolyn; Vulpescu, Nicholas A; Jung, Euihye; Dua, Renu; Canzoniero, Jenna V; Cristiano, Stephen; Adleff, Vilmos; Symecko, Heather; van den Broek, Daan; Sokoll, Lori J; Baylin, Stephen B; Press, Michael F; Slamon, Dennis J; Konecny, Gottfried E; Therkildsen, Christina; Carvalho, Beatriz; Meijer, Gerrit A; Andersen, Claus Lindbjerg; Domchek, Susan M; Drapkin, Ronny; Scharpf, Robert B; Phallen, Jillian; Lok, Christine A R; Velculescu, Victor E.
Afiliación
  • Medina JE; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Annapragada AV; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Lof P; Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Netherlands.
  • Short S; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Bartolomucci AL; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Mathios D; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Koul S; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Niknafs N; Johns Hopkins University, Baltimore, MD, United States.
  • Noe M; Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Baltimore, MD, United States.
  • Foda ZH; Johns Hopkins Medicine, Baltimore, United States.
  • Bruhm DC; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Hruban C; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Vulpescu NA; Johns Hopkins University Hospital, Baltimore, United States.
  • Jung E; University of Pennsylvania, Philadelphia, Pennsylvania, United States.
  • Dua R; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Canzoniero JV; Johns Hopkins Medicine, Baltimore, Maryland, United States.
  • Cristiano S; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Adleff V; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Symecko H; University of Pennsylvania, Philadelphia, PA, United States.
  • van den Broek D; Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands.
  • Sokoll LJ; Johns Hopkins Medicine, Baltimore, Maryland, United States.
  • Baylin SB; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Press MF; University of Southern California, Los Angeles, CA, United States.
  • Slamon DJ; Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
  • Konecny GE; University of California, Los Angeles, Los Angeles, CA, United States.
  • Therkildsen C; Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Hvidovre, Denmark.
  • Carvalho B; Netherlands Cancer Institute, Amsterdam, Netherlands.
  • Meijer GA; Netherlands Cancer Institute, Amsterdam, Netherlands.
  • Andersen CL; Aarhus University Hospital, Aarhus N, Denmark.
  • Domchek SM; University of Pennsylvania, Philadelphia, PA, United States.
  • Drapkin R; University of Pennsylvania School of Medicine, Philadelphia, PA, United States.
  • Scharpf RB; Johns Hopkins Medicine, Baltimore, United States.
  • Phallen J; Johns Hopkins Medicine, Baltimore, MD, United States.
  • Lok CAR; Netherlands Cancer Institute, Amsterdam, Netherlands.
  • Velculescu VE; Johns Hopkins Medicine, Baltimore, MD, United States.
Cancer Discov ; 2024 Sep 30.
Article en En | MEDLINE | ID: mdl-39345137
ABSTRACT
Ovarian cancer is a leading cause of death for women worldwide in part due to ineffective screening methods. In this study, we used whole-genome cell-free DNA (cfDNA) fragmentome and protein biomarker (CA-125 and HE4) analyses to evaluate 591 women with ovarian cancer, benign adnexal masses, or without ovarian lesions. Using a machine learning model with the combined features, we detected ovarian cancer with specificity >99% and sensitivity of 72%, 69%, 87%, and 100% for stages I-IV, respectively. At the same specificity, CA-125 alone detected 34%, 62%, 63%, and 100% of ovarian cancers for stages I-IV. Our approach differentiated benign masses from ovarian cancers with high accuracy (AUC=0.88, 95% CI=0.83-0.92). These results were validated in an independent population. These findings show that integrated cfDNA fragmentome and protein analyses detect ovarian cancers with high performance, enabling a new accessible approach for noninvasive ovarian cancer screening and diagnostic evaluation.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Cancer Discov Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Cancer Discov Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos