Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 263: 115350, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586200

RESUMEN

Across the globe, the frequent occurrence of drought spells has significantly undermined the sustainability of modern high-input farming systems, particularly those focused on staple crops like wheat. To ameliorate the deleterious impacts of drought through a biologically viable and eco-friendly approach, a study was designed to explore the effect of nicotinic acid on different metabolic, and biochemical processes, growth and yield of wheat under optimal moisture and drought stress (DS). The current study was comprised of different levels of nicotinic acid applied as foliar spray (0 g L-1, 0.7368, 1.477, 2.2159 g L-1) and fertigation (0.4924, 0.9848, and 1.4773 g L-1) under normal conditions and imposed drought by withholding water at anthesis stage. The response variables were morphological traits such as roots and shoots characteristics, yield attributes, grain and biological yields along with biosynthesis of antioxidants. The results revealed that nicotinic acid dose of 2.2159 g L-1 out-performed rest of treatments under both normal and DS. The same treatment resulted in the maximum root growth (length, fresh and dry weights, surface area, diameter) and shoot traits (length, fresh and dry weights) growth. Additionally, foliar applied nicotinic acid (2.2159 g L-1) also produced as the highest spike length, grains spike-1, spikelet's spike-1 and weight of 1000 grains. Moreover, these better yield attributes led to significantly higher grain yield and biological productivity of wheat. Likewise in terms of physiological growth of wheat under DS, the same treatment remained superior by recording the highest SPAD value, relative water content, water potential of leaves, leaf area, stomatal conductance (292 mmolm-2S-1), internal carbon dioxide concentration, photosynthesis and transpiration rate. Interestingly, exogenously applied nicotinic acid remained effective in triggering the antioxidant system of wheat by recording significantly higher catalase, peroxidase, superoxide dismutase and ascorbate peroxidase.


Asunto(s)
Antioxidantes , Niacina , Antioxidantes/metabolismo , Triticum/metabolismo , Sequías , Agua/metabolismo , Grano Comestible/metabolismo , Mecanismos de Defensa
2.
J Vis Exp ; (193)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-37010286

RESUMEN

Species in the genus Plantago have several unique traits that have led to them being adapted as model plants in various fields of study. However, the lack of a genetic manipulation system prevents in-depth investigation of gene function, limiting the versatility of this genus as a model. Here, a transformation protocol is presented for Plantago lanceolata, the most commonly studied Plantago species. Using Agrobacterium tumefaciens-mediated transformation, 3 week-old roots of aseptically grown P. lanceolata plants were infected with bacteria, incubated for 2-3 days, and then transferred to a shoot induction medium with appropriate antibiotic selection. Shoots typically emerged from the medium after 1 month, and roots developed 1-4 weeks after the shoots were transferred to the root induction medium. The plants were then acclimated to a soil environment and tested for the presence of a transgene using the ß-glucuronidase (GUS) reporter assay. The transformation efficiency of the current method is ~20%, with two transgenic plants emerging per 10 root tissues transformed. Establishing a transformation protocol for narrowleaf plantain will facilitate the adoption of this plant as a new model species in various areas.


Asunto(s)
Agrobacterium tumefaciens , Plantago , Agrobacterium tumefaciens/genética , Plantago/genética , Plantas Modificadas Genéticamente/genética , Transgenes , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA