RESUMEN
At the angle of the mouth, spoke-like muscle bundles converge at the "modiolus," which is believed to appear in utero. The aim of this study was to investigate the growth of the modiolus histologically. We studied frontal histological sections of the face from 12 midterm and six near-term fetuses. At midterm, a convergence of the levator anguli oris (LAOM) and depressor anguli oris (DAOM) was frequently present, and another convergence of the LAOM with the platysma (PM) or orbicularis oris (OOM) was also often evident. At near-term, muscle fiber merging or interdigitation was classified into nine combinations, five of which were frequently seen: LAOM-PM, LAOM-DAOM, zygomaticus major (ZMM)-orbicularis oris (OOM), buccinator (BM)-LAOM, and BM-PM. These combinations existed at slightly different depths and/or sites, thus allowing the angle of the mouth to receive multiple muscles. Notably, tissues interposed between the muscle fibers were limited to a thin epimysium at each crossing or interdigitation. Therefore, the LAOM, DAOM, OOM, BM, and PM appear to form a basic configuration at birth, but the development and growth were much delayed than the classical description. The modiolus is not a specific fibromuscular structure but simply represents a cluster of muscle convergence sites. Even at meeting between an elevator and depressor, a specific fibrous structure seems unlikely to connect the epimysium for the muscle convergence. Instead, the central nervous system appears to regulate the activity of related muscles to minimize tension or friction stress at the meeting site.
Asunto(s)
Músculos Faciales , Feto , Boca , Humanos , Músculos Faciales/embriología , Músculos Faciales/anatomía & histología , Músculos Faciales/crecimiento & desarrollo , Feto/anatomía & histología , Boca/embriología , Boca/anatomía & histología , Boca/crecimiento & desarrollo , Edad Gestacional , FemeninoRESUMEN
The human calcaneus is robust and provides a prominent heel for effective bipedal locomotion, although the adjacent talus has no muscle attachments. However, there is incomplete information about the morphological changes in these prominent bones during embryo development. We examined serial histological sections of 23 human embryos and early-term fetuses (approximately 5-10 weeks' gestational age [GA]). At a GA of 5 weeks, the precartilage talus was parallel to and on the medial side of the calcaneus, which had a prolate spheroid shape and consisted of three masses. At a GA of 6 weeks, the cartilaginous talus extended along the proximodistal axis, and the tuber calcanei became long and bulky, with a small sustentaculum talus at the "distal" side. At a GA of 6 to 8 weeks, the sustentaculum had a medial extension below the talus so that the talus "rode over" the calcaneus. In contrast, the talus had a more complex shape, depending on the growth of adjacent bones. At a GA of 9 to 10 weeks, the talus was above the calcaneus, but the medial part still faced the plantar subcutaneous tissue because of the relatively small sustentaculum. Therefore, the final morphology appeared after an additional several weeks. Muscle activity seemed to facilitate growth of the tuber calcanei, but growth of the other parts of calcaneus, including the sustentaculum, seemed to depend on active proliferation at the different sites of cartilage. Multiple tendons and ligaments seemed to fix the talus so that it remained close to the calcaneus.
Asunto(s)
Calcáneo , Astrágalo , Humanos , Calcáneo/embriología , Calcáneo/anatomía & histología , Astrágalo/embriología , Astrágalo/anatomía & histología , Feto/anatomía & histología , Femenino , Edad Gestacional , Tobillo/anatomía & histología , Tobillo/embriologíaRESUMEN
Temporal tendinitis is characterized by acute inflammation often resulting from mechanical stress, such as repetitive jaw movements associated with jaw opening and closing and teeth clenching. Treatment for temporal tendinitis typically involves the administration of local anesthetic or corticosteroid injections. However, the complex anatomical structure of the coronoid process, to which the temporalis tendon attaches, located deep within the zygomatic arch, poses challenges for accurate injections. In this study, we aimed to establish guidelines for the safe and effective treatment of temporal tendinitis by using intraoral ultrasonography (US) to identify the anatomical structures surrounding the temporalis tendon and coronoid process. US was performed using an intraoral transducer on 58 volunteers without temporomandibular joint disease. The procedure involved placing the transducer below the occlusal plane of the maxillary second molar. Measurements were taken for the horizontal distance from the anterior border of the coronoid process, observed at the midpoint (MP) of the US images, and the depth of the coronoid process and temporalis muscle from the oral mucosa. The anterior border of the coronoid process was visualized on all US images and classified into three observed patterns at the MP: type A (anterior to the MP, 56.2%), type B (at the MP, 16.1%), and type C (posterior to the MP, 27.7%). The temporalis muscle was located at a mean depth of 3.12 ± 0.68 mm from the oral mucosa. The maxillary second molar is an intraoral landmark for visualizing the anterior border of the coronoid process. The new location information obtained using intraoral US could help identify the safest and most effective injection sites for the treatment of temporal tendinitis.
Asunto(s)
Tendinopatía , Ultrasonografía Intervencional , Humanos , Tendinopatía/diagnóstico por imagen , Tendinopatía/tratamiento farmacológico , Masculino , Femenino , Adulto , Ultrasonografía Intervencional/métodos , Adulto Joven , Músculo Temporal/diagnóstico por imagen , Músculo Temporal/anatomía & histologíaRESUMEN
PURPOSE: Little information is known about the mentalis nerve course from the lower lip approximation margin (free margin) to the upper lip. Likewise, no difference in nerve distribution has been observed between the cutaneous and mucosal parts of the lip. Therefore, this study reexamined mentalis nerve morphology. METHODS: For macroscopic observations, three fresh cadavers were dissected (one male and two females; aged 78-93). We also evaluated histological sections obtained from five donated elderly cadavers (two males and three females, aged 82-96 years) and 15 human fetuses (11-40 weeks or crown-rump length 80-372 mm). Immunohistochemical analysis for S100 protein and tyrosine hydroxylase was performed. RESULTS: In both fetuses and adult cadavers, one to three nerve branches ran upward in the submucosal tissue from the mental foramen. Near the free margin of the lip, some branches passed through the orbicularis oris muscle layer toward the lip skin, whereas others followed a reversed J-shaped course along the free margin. Nerve twigs ran in parallel beneath the mucosa, whereas wavy nerve twigs attached to the basal lamina of the lip epidermis. The difference in nerve endings abruptly occurred at the skin-mucosal junction. Tyrosine hydroxylase-positive sympathetic nerve twigs surrounded arteries and formed a branch composed of S100-negative unmyelinated fibers. CONCLUSION: The lower lip skin was innervated by a perforating branch passing through the orbicularis oris muscle, that was different from the lip mucosa. A sudden change in the nerve ending configuration at the mucocutaneous junction seemed to develop postnatally.
Asunto(s)
Cadáver , Feto , Labio , Humanos , Femenino , Labio/inervación , Masculino , Anciano de 80 o más Años , Anciano , Proteínas S100/análisis , Proteínas S100/metabolismo , Tirosina 3-Monooxigenasa/análisis , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
The morphogenetic process of development of the circumference of the mandibular fossa during tooth eruption, which involves the replacement of deciduous teeth with permanent teeth, is strongly affected by occlusion. To the best of our knowledge, no studies have investigated the effect of occlusion on this process. This study investigated the morphogenetic process of development during tooth eruption using dried skulls harvested from Indian donors. The average distance between the ala-major-squamosa suture and the foramen ovale according to age group was as follows: 3.24 mm in the 8-month-old group and 8.92 mm in the adult group. The average distance between the ala-major-squamosa suture and the apex of the articular tubercle according to age groups was as follows: 10.38 mm in the 8-month-old group and 19.34 mm in the adult group. The average distance between the point of intersection of the petrosquamous fissure and petrotympanic fissure located on the perpendicular line drawn posteriorly from the shortest distance of the medio-lateral axis between the ala-major-squamosa suture and the apex of the articular tubercle according to age group was as follows: 9.68 mm in the 8-month-old group and 14.3 mm in the adult group. These results suggest that the mandibular fossa is strongly affected by load due to occlusion, unlike the growth of the neurocranium. This indicates that the effect of occlusion is a secondary element in the morphogenetic process of development of the circumference of the mandibular fossa.
Asunto(s)
Hueso Temporal , Articulación Temporomandibular , Cefalometría/métodos , Oclusión Dental , Cóndilo MandibularRESUMEN
Recent molecular biology studies have revealed the process of nasal capsule determination. We aimed to create a fate map showing the association between the adult and embryonic components of the nasal wall and nasal capsule derivatives. We examined paraffin-embedded histological sections between 15 mid-term (9-16 weeks) and 12 near-term (27-40 weeks) foetuses. Until 15 weeks, membranous ossification occurred 'along' the capsular cartilage, contributing to the formation of the vomer, maxilla and bony nasal septum as well as the nasal, frontal and lacrimal bones. After 15 weeks, a wide lateral part of the capsule became thin and fragmented, and degenerative cartilage was observed near the lacrimal bone, in the three conchae, and at the inferolateral end of the capsule sandwiched between the maxilla and palatine bone. The disappearing cartilages appeared to be replaced by nearby membranous bones. This type of membranous ossification did not appear to use the capsular cartilage as a 'mould', although the perichondrium may have a role in inducing ossification. Calcified cartilage indicated endochondral ossification in the inferior concha until 15 weeks and, later, at the bases of three conchae and around the future sphenoid sinus (i.e. the concha sphenoidalis). The capsular cartilage extended antero-superiorly over the frontal bone and inserted into the nasal bone. At 40 weeks, the capsular cartilage remained in the cribriform plate and at the inferolateral end along the palatine bone. Consequently, less guidance from the nasal capsule seemed to provide great individual variation in the shape of the wide anterolateral wall of the nasal cavity.
Asunto(s)
Cavidad Nasal , Osteogénesis , Humanos , Adulto , Cartílago , Feto , MaxilarRESUMEN
Epiglottic retroversion is difficult to explain anatomically. One reason is inadequate structural identification of the ligaments in the submucosal tissue anterior to the epiglottis (pre-epiglottic space, PES). Although studies have shown that tongue root movement plays a role in epiglottic retroversion, few morphological reports have investigated the attachment of the lingual muscles to the epiglottis. This study reconstructed the fiber structure of the PES by comprehensively analyzing fiber alignment in the PES focusing on the hyoepiglottic ligament, which runs between the lingual muscles and the epiglottis. Gross and microscopic observations of the submucosal structures from the tongue to the larynx of 20 cadavers (10 men, 10 women; mean age 79 years) were performed. A tendon continuing from the posterior part of the genioglossus muscle and attaching to the center of the epiglottic cartilage was identified in the midline area of the epiglottis. We named this tendon the glossoepiglottic tendon. In contrast, the hyoepiglottic ligament is found between the hyoid bone and the epiglottis and is attached from the lateral margin of the epiglottic cartilage to its base. Furthermore, the glossoepiglottic tendon consists of a high-density fiber bundle that is thicker than the hyoepiglottic ligament. These results show that the conventional hyoepiglottic ligament has a two-layer structure consisting of an upper fiber bundle connected to the genioglossus muscle and a lower fiber bundle connected to the hyoid bone. Sustained contraction of the posterior part of the genioglossus muscle therefore places the epiglottis under persistent traction, suggesting that its relaxation may cause epiglottic retroversion.
Asunto(s)
Epiglotis , Laringe , Masculino , Humanos , Femenino , Anciano , Epiglotis/patología , Laringe/fisiología , Lengua , Hueso Hioides , MúsculosRESUMEN
The purpose of this study was to investigate the process and derivation of the distribution of the sensory nerves that appear in the extraction socket and surrounding alveolar bone following tooth extraction. The right mandibular first molar of rats and periodontal ligament were extracted as a single mass, and the mandible was harvested after days 1, 3, 5, and 7 after extraction. Serial sections of 7 µm thickness were prepared for the proximal root (Section A), buccolingual root (Section B), and centrifugal root (Section C) of the first molar. H-E staining and immunohistochemical staining with anti-S100 antibody and anti-NF-L antibody were carried out. The presence of nerve fiber bundles in the blood clot was already evident on post-extraction day 3, and on post-extraction day 7. On day 3, the number of axons in Sections B and C had greatly decreased, indicating that, after extraction, the connection between peripheral nerve tissue and the trigeminal ganglion was temporarily markedly reduced in the region of the alveolar branch. Although the myelin sheaths were regenerating on day 5, the majority of the axons of the alveolar branches extending from the inferior alveolar nerve were seen to be extremely thin and scattered, despite their further regeneration. The above results suggest that the newly myelinated nerves are actually derived from the bone marrow to the extraction socket, so few nerves, rather than being derived from the alveolar branches that had innervated the extracted tooth.
Asunto(s)
Vaina de Mielina , Ligamento Periodontal , Animales , Ratas , Axones , Nervio Mandibular , Diente MolarRESUMEN
Myostatin (Myo) is known to suppress skeletal muscle growth, and was recently reported to control tendon homeostasis. The purpose of the present study was to investigate the regulatory involvement of Myo in the myotendinous junction (MTJ) in vivo and in vitro. After Achilles tendon injury in mice, we identified unexpected cell accumulation on the tendon side of the MTJ. At postoperative day 7 (POD7), the nuclei had an egg-like profile, whereas at POD28 they were spindle-shaped. The aspect ratio of nuclei on the tendon side of the MTJ differed significantly between POD7 and POD28 (p = 4.67 × 10-34). We then investigated Myo expression in the injured Achilles tendon. At the MTJ, Myo expression was significantly increased at POD28 relative to POD7 (p = 0.0309). To investigate the action of Myo in vitro, we then prepared laminated sheets of myoblasts (C2C12) and fibroblasts (NIH3T3) (a pseudo MTJ model). Myo did not affect the expression of Pax7 and desmin (markers of muscle development), scleraxis and temonodulin (markers of tendon development), or Sox9 (a common marker of muscle and tendon development) in the cell sheets. However, Myo changed the nuclear morphology of scleraxis-positive cells arrayed at the boundary between the myoblast sheet and the fibroblast sheet (aspect ratio of the cell nuclei, myostatin(+) vs. myostatin(-): p = 0.000134). Myo may strengthen the connection at the MTJ in the initial stages of growth and wound healing.
Asunto(s)
Tendón Calcáneo , Unión Miotendinosa , Ratones , Animales , Miostatina/genética , Células 3T3 NIH , Músculos/fisiología , Músculo EsqueléticoRESUMEN
Tendons help transmit forces from the skeletal muscles and bones. However, tendons have inferior regenerative ability compared to muscles. Despite studies on the regeneration of muscles and bone tissue, only a few have focused on tendinous tissue regeneration, especially tendon regeneration. Sex-determining region Y-box transcription factor 9 (Sox9) is an SRY-related transcription factor with a DNA-binding domain and is an important control factor for cartilage formation. Sox9 is critical to the early-to-middle stages of tendon development. However, how Sox9 participates in the healing process after tendon injury is unclear. We hypothesized that Sox9 is expressed in damaged tendons and is crucially involved in restoring tendon functions. We constructed a mouse model of an Achilles tendon injury by performing a 0.3 mm wide partial excision in the Achilles tendon of mice, and chronologically evaluated the function restoration and localization of the Sox9 expressed in the damaged sites. The results reveal that Sox9 was expressed simultaneously with the formation of the pre-structure of the epitenon, an essential part of the tendinous tissue, indicating that its expression is linked to the functional restoration of tendons. Lineage tracing for Sox9 expressed during tendon restoration revealed the tendon restoration involvement of cells that switched into Sox9-expressing cells after tendon injury. The stem cells involved in tendon regeneration may begin to express Sox9 after injury.
Asunto(s)
Tendón Calcáneo , Factor de Transcripción SOX9 , Traumatismos de los Tendones , Animales , Ratones , Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Músculo Esquelético/metabolismo , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Traumatismos de los Tendones/metabolismo , Traumatismos de los Tendones/fisiopatología , Factores de Transcripción/metabolismo , Recuperación de la FunciónRESUMEN
PURPOSE: The palatine bone (PAL) rides over the maxilla (MX) without an end-to-end suture in the bony palate of fetuses. However, changes in the topographical relationship among bones was unknown at and along the pterygopalatomaxillary suture, including the palatine canals. METHODS: Using sagittal, frontal, and horizontal histological sections of the head from 15 midterm fetuses to 12 near-term fetuses, we depicted the changes in the topographical anatomy of the MX, PAL, and greater palatine nerve (GPN). RESULTS: In the bony greater palatine canal of these fetuses, the medial and posterior walls facing the GPN were consistently made up of the PAL. At midterm, the entire course of the GPN was embedded in the PAL (six fetuses), or the MX contributed to the lateral wall of the nerve canal (nine). At near-term, the anterior and lateral walls showed individual variations: an MX in the anterior and lateral walls (three fetuses), an anterior MX and a lateral PAL (five), an anterior PAL and a lateral MX (two), and a PAL surrounding the GPN (four). CONCLUSION: These increasing variations suggested that the pterygopalatomaxillary suture was actually growing and that the PAL transiently expanded anteriorly and/or laterally to push the MX in fetuses. The "usual" morphology in which the GPN is sandwiched by the MX and PAL is likely established after birth, possibly during adolescence. The driving force of this change may not be produced by the masticatory apparatus. Rather, it might be triggered by the growing maxillary sinus.
Asunto(s)
Maxilar , Paladar Duro , Adolescente , Humanos , Paladar Duro/anatomía & histología , Maxilar/anatomía & histología , Feto/anatomía & histología , Nervio Maxilar , CabezaRESUMEN
Accurate orthodontic analysis and diagnosis based on anatomical landmarks is essential to the success of orthodontic treatment. Helical computed tomography (CT) has evolved markedly, and dentists can now quickly obtain 3-dimensional (3D) reconstruction data using this imaging modality. The planning of orthodontic treatment had traditionally been based on cephalometric analysis using 2D landmarks. This study aimed to collect 3D morphological data using CT images to establish new landmarks for analysis and diagnosis in orthodontic treatment. Twenty male and 20 female adult Japanese dry skulls with of normal occlusion were selected. The skulls were scanned using a multidetector helical CT system (SIEMENS, Volume Zoom Plus 4, Germany). Models were reconstructed using 3D measurement software (Simplant, Dentsply Sirona, Tokyo, Japan) and 45 landmarks determined. Three-dimensional measurement for a total of 30 items representing these landmarks was then performed. The results provided 3D standard values for maxillofacial morphology in adult Japanese individuals with normal occlusion. These measurement items should allow the disadvantages of 2D cephalometric analysis to be overcome.
Asunto(s)
Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Adulto , Humanos , Masculino , Femenino , Japón , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Cefalometría/métodos , Tomografía Computarizada de Haz Cónico/métodosRESUMEN
CD34 is expressed in various cell types in various tissues/organs, and has been regarded as being expressed in progenitors in various differentiation pathways. On the other hand, morphological studies have reported the presence of a special type of interstitial cells, telocytes, which generally express CD34, and have extremely long moniliform prolongations in various tissues/organs in vertebrates. We have recently reported the successful reconstruction of testicular structures by 3-D re-aggregation culture of dissociated prepubertal mouse testicular cells, and the roles of CD34 + cells in the reconstruction. However, it was unknown whether CD34 is expressed in embryonic through adult testes, and if so, in what cell type it is expressed. In order to clarify the expression of CD34 and behavior of CD34 + cells during development of mouse testes, we performed immunohistochemical studies. The results show that CD34 is expressed in two cell types in testes; one is endothelial cells which co-express CD31, VE-cadherin, and integrin ß1, but barely express PDGFRα and integrin α4 and α9, throughout development, while the other one is non-endothelial cells in which CD34 expression is initiated after birth, and which co-express PDGFRα and integrin α4, α9, and ß1. The latter corresponds to telocytes. The present findings will lead to clarifying the roles of these two types of CD34 + cells in spermatogenesis.
Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Testículo , Animales , Antígenos CD34/metabolismo , Integrina alfa4/metabolismo , Integrina beta1/metabolismo , Masculino , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Testículo/metabolismoRESUMEN
Mammalian testes consist of seminiferous tubules within which Sertoli cells line up at the periphery and nurse germ cells, and of interstitia that harbor various cells such as peritubular myoid cells (PMCs), Leydig cells (LCs), vascular endothelial cells, immune cells such as macrophages, and mesenchymal (stromal) cells. Morphological studies have recently reported the presence of telocytes with telopodes in the interstitium of adult mouse, rat, and human testes. CD34+PDGFRα+ telocytes with long and moniliform telopodes form reticular networks with various cell types such as LCs, PMCs, and vessels, indicating their potential functions in cell-cell communications and tissue homeostasis. Functional studies have recently been performed on testicular interstitial cells and CD34+ cells, using 3D re-aggregate cultures of dissociated testicular cells, and cell cultures. Direct observation of CD34+ cells and adult LCs (ALCs) revealed that CD34+ cells extend thin cytoplasmic processes (telopodes), move toward the LC-CD34+ cell-re-aggregates, and finally enter into the re-aggregates, indicating the chemotactic behavior of CD34+ telocytes toward ALCs. In mammalian testes, important roles of mesenchymal interstitial cells as stem/progenitors in the differentiation and regeneration of LCs have been reported. Here, reports on testicular telocytes so far obtained are reviewed, and future perspectives on the studies of testicular telocytes are noted.
Asunto(s)
Telocitos , Testículo , Adulto , Animales , Antígenos CD34/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Ratones , Ratas , Telocitos/metabolismo , Telopodos/metabolismo , Testículo/metabolismoRESUMEN
The mammalian secondary palate is formed through complex developmental processes: growth, elevation, and fusion. Although it is known that the palatal elevation pattern changes along the anterior-posterior axis, it is unclear what molecules are expressed and whether their locations change before and after elevation. We examined the expression regions of molecules associated with palatal shelf elevation (Pax9, Osr2, and Tgfß3) and tissue deformation (F-actin, E-cadherin, and Ki67) using immunohistochemistry and RT-PCR in mouse embryos at E13.5 (before elevation) and E14.5 (after elevation). Pax9 was expressed at significantly higher levels in the lingual/nasal region in the anterior and middle parts, as well as in the buccal/oral region in the posterior part at E13.5. At E14.5, Pax9 was expressed at significantly higher levels in both the lingual/nasal and buccal/oral regions in the anterior and middle parts and the buccal/oral regions in the posterior part. Osr2 was expressed at significantly higher levels in the buccal/oral region in all parts at E13.5 and was more strongly expressed at E13.5 than at E14.5 in all regions. No spatiotemporal changes were found in the other molecules. These results suggested that Pax9 and Osr2 are critical molecules leading to differences in the elevation pattern in palatogenesis.
Asunto(s)
Fisura del Paladar , Regulación del Desarrollo de la Expresión Génica , Animales , Fisura del Paladar/genética , Expresión Génica , Mamíferos/genética , Ratones , Hueso Paladar/metabolismoRESUMEN
Oral and perioral soft tissues cooperate with other oral and pharyngeal organs to facilitate mastication and swallowing. It is essential for these tissues to maintain their morphology for efficient function. Recently, it was reported that the morphology of oral and perioral soft tissue can be altered by aging or orthodontic treatment. However, it remains unclear whether tooth loss can alter these tissues' morphology. This study examined whether tooth loss could alter lip morphology. First, an analysis of human anatomy suggested that tooth loss altered lip morphology. Next, a murine model of tooth loss was established by extracting an incisor; micro-computed tomography revealed that a new bone replaced the extraction socket. Body weight was significantly lower in the tooth loss (UH) group than in the non-extraction control (NH) group. The upper lip showed a greater degree of morphological variation in the UH group. Proteomic analysis and immunohistochemical staining of the upper lip illustrated that S100A8/9 expression was higher in the UH group, suggesting that tooth loss induced lip inflammation. Finally, soft-diet feeding improved lip deformity associated with tooth loss, but not inflammation. Therefore, soft-diet feeding is essential for preventing lip morphological changes after tooth loss.
Asunto(s)
Incisivo , Pérdida de Diente , Animales , Cefalometría/métodos , Incisivo/diagnóstico por imagen , Ratones , Proteómica , Extracción Dental , Técnicas de Movimiento Dental , Microtomografía por Rayos XRESUMEN
In vitro, in vivo, and clinical studies have shown how the physicochemical and biological properties of ß-tricalcium phosphate (ß-TCP) work in bone regeneration. This study aimed to improve the properties of ß-TCP by achieving optimum surface and bulk ß-TCP chemical/physical properties through the hydrothermal addition of magnesium (Mg) and to later establish the biocompatibility of ß-TCP/Mg for bone grafting and tissue engineering treatments. Multiple in vitro and in vivo analyses were used to complete ß-TCP/Mg physicochemical and biological characterization. The addition of MgO brought about a modest rise in the number of ß-TCP surface particles, indicating improvements in alkaline phosphatase (ALP) activity on day 21 (p < 0.05) and in the WST-1assay on all days (p < 0.05), with a corresponding increase in the upregulation of ALP and bone sialoprotein. SEM analyses stated that the surfaces of the ß-TCP particles were not altered after the addition of Mg. Micro-CT and histomorphometric analysis from rabbit calvaria critical defects resulted in ß-TCP/Mg managing to reform more new bone than the control defects and ß-TCP control at 2, 6, and 8 weeks (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001). The hydrothermal addition of MgO to the ß-TCP surfaces ameliorated its biocompatibility without altering its surface roughness resulting from the elemental composition while enhancing cell viability and proliferation, inducing more bone regeneration by osteoconduction in vivo and osteoblastic differentiation in vitro.
Asunto(s)
Regeneración Ósea , Fosfatos de Calcio/farmacología , Diferenciación Celular , Magnesio/farmacología , Osteogénesis , Andamios del Tejido , Animales , Línea Celular , Humanos , Masculino , ConejosRESUMEN
Owing to a rapid increase in aging population in recent years, the deterioration of motor function in older adults has become an important social problem, and several studies have aimed to investigate the mechanisms underlying muscle function decline. Furthermore, structural maintenance of the muscle-tendon-bone complexes in the muscle attachment sites is important for motor function, particularly for joints; however, the development and regeneration of these complexes have not been studied thoroughly and require further elucidation. Recent studies have provided insights into the roles of mesenchymal progenitors in the development and regeneration of muscles and myotendinous junctions. In particular, studies on muscles and myotendinous junctions have-through the use of the recently developed scRNA-seq-reported the presence of syncytia, thereby suggesting that fibroblasts may be transformed into myoblasts in a BMP-dependent manner. In addition, the high mobility group box 1-a DNA-binding protein found in nuclei-is reportedly involved in muscle regeneration. Furthermore, studies have identified several factors required for the formation of locomotor apparatuses, e.g., tenomodulin (Tnmd) and mohawk (Mkx), which are essential for tendon maturation.
Asunto(s)
Músculo Esquelético , Tendones , Uniones Célula-Matriz , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Mioblastos , Tendones/metabolismoRESUMEN
PURPOSE: To demonstrate the entire course of the human vitelline vein (VV) in specimens after degeneration of the yolk sac. METHODS: Sagittal and horizontal histological sections from 8 embryos and 19 fetuses (gestational age approximately 6-12 weeks; crown-rump length 11-61 mm) were examined. RESULTS: Two types of VV remnants were observed: a long VV on the right superior side of the mesentery of the jejunum (VV1) and a short VV on the left inferior side of the mesentery (VV2). The VV1, observed in 12 specimens, was 20-30 microns in diameter and ran dorsally between the right liver lobe and the jejunum, subsequently merging with an initial superior mesenteric vein on the pancreatic head immediately below the superior portion of the duodenum. The VV2, observed in four specimens, passed dorsally between loops of the ileum on the left side of the mesentery of the ileum and connected to the mesentery. Many of the VVs did not originate from the umbilical cord but suddenly started in the sack of physiological herniation. At 10-12 weeks, after herniation, the VVs originated from the umbilicus and were involved by the expanding greater omentum. CONCLUSIONS: The right-sided and left-sided VVs seemed to correspond to right and left VV remnants, respectively, and both took an upstream course outside the mesentery of the jejunum and ileum. The right VV upstream portion was likely to disappear later than the left one, but the timing of degeneration varied greatly among individuals, depending on the topographical relationship between the right liver lobe and the jejunum.
Asunto(s)
Embrión de Mamíferos , Feto , Abdomen , Humanos , Lactante , Hígado/anatomía & histología , Venas MesentéricasRESUMEN
PURPOSE: The constrictor pharyngis superior (CPS) initially develops along the posterior wall of the pharyngeal mucosal tube, whereas, during the early phase, the buccinators (BC) are far anterolateral to the CPS. The process and timing of their meeting during fetal growth have not been determined. METHODS: The topographical relationship between the growing BC and CPS was assessed in histological sections from 22 early- and mid-term fetuses of approximate gestational age (GA) 8-16 weeks, and eight late-term fetuses of approximate GA 31-39 weeks. RESULTS: At 8-9 weeks, the palatopharyngeus appeared to pull the CPS up and forward. Until 11 weeks, the CPS was attached to the hamulus of the pterygoid (pterygopharyngeal part). Until 13 weeks, the CPS extended anterolaterally beyond the hamulus to meet the BC. Some BC muscle fibers originated from the oral mucosa. Notably, by 30 weeks, the CPS-BC interface had become covered by or attached to the palatopharyngeus. Muscle fibers of the palatopharyngeus, however, were thinner than those of the CPS and BC. At and near the interface, BC muscle fibers tended to run along the left-right axis, whereas those of the CPS ran anteroposteriorly. A definite fascia (i.e., a future pterygomandibular raphe) was usually absent between these muscles in fetuses. CONCLUSIONS: The excess anterior growth of the CPS with its subsequent degeneration might cause individual anatomical variations in composite muscle bundles of the palatopharyngeus-CPS complex or palatopharyngeal sphincter. A tensile transduction from the BC to the CPS through the raphe seemed unnecessary for cooperative suckling and swallowing after birth.