Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Immunobiology ; 224(3): 408-418, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30954271

RESUMEN

Hydrophilic lung surfactant proteins have emerged as key immunomodulators which are potent at the recognition and clearance of pulmonary pathogens. Surfactant protein A (SP-A) is a surfactant-associated innate immune molecule, which is known to interact with a variety of pathogens, and display anti-microbial effects. SP-A, being a carbohydrate pattern recognition molecule, has a wide range of innate immune functions against respiratory pathogens, including influenza A virus (IAV). Some pandemic pH1N1 strains resist neutralization by SP-A due to differences in the N-glycosylation of viral hemagglutinin (HA). Here, we provide evidence, for the first time, that a recombinant form of human SP-A (rfhSP-A), composed of α-helical neck and carbohydrate recognition domains, can actually promote the IAV replication, as observed by an upregulation of M1 expression in lung epithelial cell line, A549, when challenged with pH1N1 and H3N2 IAV subtypes. rfhSP-A (10 µg/ml) bound neuraminidase (NA) (∼60 kDa), matrix protein 1 (M1) (∼25 kDa) and M2 (∼17 kDa) in a calcium dependent manner, as revealed by far western blotting, and direct binding ELISA. However, human full length native SP-A downregulated mRNA expression levels of M1 in A549 cells challenged with IAV subtypes. Furthermore, qPCR analysis showed that transcriptional levels of TNF-α, IL-12, IL-6, IFN-α and RANTES were enhanced following rfhSP-A treatment by both IAV subtypes at 6 h post-IAV infection of A549 lung epithelial cells. In the case of full length SP-A treatment, mRNA expression levels of TNF-α and IL-6 were downregulated during the mid-to-late stage of IAV infection of A549 cells. Multiplex cytokine/chemokine array revealed enhanced levels of both IL-6 and TNF-α due to rfhSP-A treatment in the case of both IAV subtypes tested, while no significant effect was seen in the case of IL-12. Enhancement of IAV infection of pH1N1 and H3N2 subtypes by truncated rfhSP-A, concomitant with infection inhibition by full-length SP-A, appears to suggest that a complete SP-A molecule is required for protection against IAV. This is in contrast to a recombinant form of trimeric lectin domains of human SP-D (rfhSP-D) that acts as an entry inhibitor of IAV.


Asunto(s)
Antivirales/metabolismo , Células Epiteliales/fisiología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Pulmón/patología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Células Epiteliales/virología , Glicosilación , Humanos , Mediadores de Inflamación/metabolismo , Unión Proteica , Dominios Proteicos/genética , Proteína A Asociada a Surfactante Pulmonar/genética , Proteínas Recombinantes/genética , Virulencia , Replicación Viral
2.
Front Immunol ; 9: 131, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29483907

RESUMEN

Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation.


Asunto(s)
Proteínas ADAMTS/inmunología , Macrófagos/inmunología , Nanotubos de Carbono/química , Properdina/inmunología , Proteínas ADAMTS/genética , Carboximetilcelulosa de Sodio/química , Activación de Complemento , Citocinas/genética , Células HEK293 , Humanos , Inflamación/inmunología , Properdina/genética , Unión Proteica , Células THP-1
3.
Front Immunol ; 9: 1586, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30105014

RESUMEN

Surfactant protein D (SP-D) is expressed in the mucosal secretion of the lung and contributes to the innate host defense against a variety of pathogens, including influenza A virus (IAV). SP-D can inhibit hemagglutination and infectivity of IAV, in addition to reducing neuraminidase (NA) activity via its carbohydrate recognition domain (CRD) binding to carbohydrate patterns (N-linked mannosylated) on NA and hemagglutinin (HA) of IAV. Here, we demonstrate that a recombinant fragment of human SP-D (rfhSP-D), containing homotrimeric neck and CRD regions, acts as an entry inhibitor of IAV and downregulates M1 expression considerably in A549 cells challenged with IAV of H1N1 and H3N2 subtypes at 2 h treatment. In addition, rfhSP-D downregulated mRNA levels of TNF-α, IFN-α, IFN-ß, IL-6, and RANTES, particularly during the initial stage of IAV infection of A549 cell line. rfhSP-D also interfered with IAV infection of Madin Darby canine kidney (MDCK) cells through HA binding. Furthermore, rfhSP-D was found to reduce luciferase reporter activity in MDCK cells transduced with H1+N1 pseudotyped lentiviral particles, where 50% of reduction was observed with 10 µg/ml rfhSP-D, suggestive of a critical role of rfhSP-D as an entry inhibitor against IAV infectivity. Multiplex cytokine array revealed that rfhSP-D treatment of IAV challenged A549 cells led to a dramatic suppression of key pro-inflammatory cytokines and chemokines. In the case of pH1N1, TNF-α, IFN-α, IL-10, IL-12 (p40), VEGF, GM-CSF, and eotaxin were considerably suppressed by rfhSP-D treatment at 24 h. However, these suppressive effects on IL-10, VEGF, eotaxin and IL-12 (p40) were not so evident in the case of H3N2 subtype, with the exception of TNF-α, IFN-α, and GM-CSF. These data seem to suggest that the extent of immunomodulatory effect of SP-D on host cells can vary considerably in a IAV subtype-specific manner. Thus, rfhSP-D treatment can downregulate pro-inflammatory milieu encouraged by IAV that otherwise causes aberrant inflammatory cell recruitment leading to cell death and lung damage.


Asunto(s)
Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Células A549 , Animales , Aves , Citocinas/inmunología , Perros , Hemaglutininas/inmunología , Humanos , Células de Riñón Canino Madin Darby , Péptidos/genética , Péptidos/inmunología , Proteína D Asociada a Surfactante Pulmonar/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
4.
Front Immunol ; 9: 533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867915

RESUMEN

Mycobacterium tuberculosis can proficiently enter macrophages and diminish complement activation on its cell surface. Within macrophages, the mycobacterium can suppress macrophage apoptosis and survive within the intracellular environment. Previously, we have shown that complement regulatory proteins such as factor H may interfere with pathogen-macrophage interactions during tuberculosis infection. In this study, we show that Mycobacterium bovis BCG binds properdin, an upregulator of the complement alternative pathway. TSR4+5, a recombinant form of thrombospondin repeats 4 and 5 of human properdin expressed in tandem, which is an inhibitor of the alternative pathway, was also able to bind to M. bovis BCG. Properdin and TSR4+5 were found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Quantitative real-time PCR revealed elevated pro-inflammatory responses (TNF-α, IL-1ß, and IL-6) in the presence of properdin or TSR4+5, which gradually decreased over 6 h. Correspondingly, anti-inflammatory responses (IL-10 and TGF-ß) showed suppressed levels of expression in the presence of properdin, which gradually increased over 6 h. Multiplex cytokine array analysis also revealed that properdin and TSR4+5 significantly enhanced the pro-inflammatory response (TNF-α, IL-1ß, and IL-1α) at 24 h, which declined at 48 h, whereas the anti-inflammatory response (IL-10) was suppressed. Our results suggest that properdin may interfere with mycobacterial entry into macrophages via TSR4 and TSR5, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. This study offers novel insights into the non-complement related functions of properdin during host-pathogen interactions in tuberculosis.


Asunto(s)
Macrófagos/fisiología , Mycobacterium bovis/fisiología , Properdina/fisiología , Trombospondinas/fisiología , Citocinas/genética , Humanos , Células THP-1
5.
Front Immunol ; 7: 567, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018340

RESUMEN

The heterotrimeric globular head (gC1q) domain of human C1q is made up of the C-terminal ends of the three individual chains, ghA, ghB, and ghC. A candidate receptor for the gC1q domain is a multi-functional pattern recognition protein, gC1qR. Since understanding of gC1qR and gC1q interaction could provide an insight into the pleiotropic functions of gC1qR, this study was undertaken to identify the gC1qR-binding site on the gC1q domain, using the recombinant ghA, ghB, and ghC modules and their substitution mutants. Our results show that ghA, ghB, and ghC modules can interact with gC1qR independently, thus reinforcing the notion of modularity within the gC1q domain of human C1q. Mutational analysis revealed that while Arg162 in the ghA module is central to interaction between gC1qR and C1q, a single amino acid substitution (arginine to glutamate) in residue 114 of the ghB module resulted in enhanced binding. Expression of gC1qR and C1q in adherent monocytes with or without pro-inflammatory stimuli was also analyzed by qPCR; it showed an autocrine/paracrine basis of C1q and gC1qR interaction. Microscopic studies revealed that C1q and gC1qR are colocalized on PBMCs. Cell proliferation assays indicated that ghA, ghB, and ghC modules were able to attenuate phytohemagglutinin-stimulated proliferation of PBMCs. Addition of gC1qR had an additive effect on the anti-proliferative effect of globular head modules. In summary, our results identify residues involved in C1q-gC1qR interaction and explain, to a certain level, their involvement on the immune cell surface, which is relevant for C1q-induced functions including inflammation, infection, and immunity.

6.
J Biomed Nanotechnol ; 12(1): 197-216, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27301184

RESUMEN

Nanoparticles are attractive drug delivery vehicles for targeted organ-specific as well as systemic therapy. However, their interaction with the immune system offers an intriguing challenge to the success of nanotherapeutics in vivo. Recently, we showed that pristine and derivatised carbon nanotubes (CNT) can activate complement mainly via the classical pathway leading to enhanced uptake by phagocytic cells, and transcriptional down-regulation of pro-inflammatory cytokines. Here, we report the interaction of complement-activating CC-CNT and RNA-CNT, and non-complement-activating gold-nickel (Au-Ni) nanowires with cell lines representing macrophage, B and T cells. Complement deposition considerably enhanced uptake of CNTs by immune cells known to overexpress complement receptors. Real-Time qPCR and multiplex array analyses showed complement-dependent down-regulation of TNF-α and IL-1ß and up-regulation of IL-12 by CMC- and RNA-CNTs, in addition to revealing IL-10 as a crucial regulator during nanoparticle-immune cell interaction. It appears that complement system can recognize molecular patterns differentially displayed by nanoparticles and thus, modulate subsequent processing of nanoparticles by antigen capturing and antigen presenting cells, which can shape innate and adaptive immune axes.


Asunto(s)
Linfocitos B/inmunología , Citocinas/inmunología , Inmunidad Celular/inmunología , Macrófagos/inmunología , Nanotubos de Carbono/toxicidad , Linfocitos T/inmunología , Linfocitos B/efectos de los fármacos , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/toxicidad , Humanos , Inmunidad Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ensayo de Materiales , Nanotubos de Carbono/química , Linfocitos T/efectos de los fármacos
7.
Ann Saudi Med ; 33(1): 1-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23458931

RESUMEN

BACKGROUND AND OBJECTIVES: Although hepatitis C virus (HCV) genotype 4 has been reported to be prevalent in some countries of the Middle East, the genotype distribution in some geographical areas is not conclusive. We aimed to perform a meta-analysis on available literature on this issue in an attempt to identify or confirm the prevailing HCV genotypes in Saudi Arabia. METHODS: We searched for reports describing genotypes in Saudi Arabia. A meta-analysis was performed on the samples in 18 studies, published between 1995 and 2011, in which HCV genotypes were identified. RESULTS: A total of 2277 specimens from 18 studies showed that 617, 82, 119 and 1198 subjects were HCV-positive for genotypes 1, 2, 3 and 4, respectively. The meta-analyses showed that there is a great deal of heterogeneity in estimated prevalence among the studies. The highest prevalence was found in genotype HCV-4, followed by HCV-1, HCV-3, and HCV-2. CONCLUSION: Our meta-analysei emphasizes that HCV genotype 4 is the most prevalent, followed by genotype 1. Further studies on genotype determination and subtype distribution are warranted.


Asunto(s)
Genotipo , Hepacivirus/genética , Hepatitis C/virología , Humanos , Prevalencia , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA