Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 186(3): 577-590.e16, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693373

RESUMEN

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.


Asunto(s)
Dopamina , Tacto , Ratones , Masculino , Femenino , Animales , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/metabolismo , Recompensa , Neuronas Dopaminérgicas/metabolismo , Optogenética , Receptores Acoplados a Proteínas G/metabolismo
2.
Cell ; 168(1-2): 295-310.e19, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28041852

RESUMEN

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.


Asunto(s)
Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis , Animales , Axones/metabolismo , Dendritas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Mecanorreceptores/metabolismo , Ratones , Biología Molecular/métodos , Vías Nerviosas , Percepción del Tacto
3.
Cell ; 159(7): 1640-51, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525881

RESUMEN

The perception of touch, including the direction of stimulus movement across the skin, begins with activation of low-threshold mechanosensory neurons (LTMRs) that innervate the skin. Here, we show that murine Aδ-LTMRs are preferentially tuned to deflection of body hairs in the caudal-to-rostral direction. This tuning property is explained by the finding that Aδ-LTMR lanceolate endings around hair follicles are polarized; they are concentrated on the caudal (downward) side of each hair follicle. The neurotrophic factor BDNF is synthesized in epithelial cells on the caudal, but not rostral, side of hair follicles, in close proximity to Aδ-LTMR lanceolate endings, which express TrkB. Moreover, ablation of BDNF in hair follicle epithelial cells disrupts polarization of Aδ-LTMR lanceolate endings and results in randomization of Aδ-LTMR responses to hair deflection. Thus, BDNF-TrkB signaling directs polarization of Aδ-LTMR lanceolate endings, which underlies direction-selective responsiveness of Aδ-LTMRs to hair deflection.


Asunto(s)
Ganglios Espinales/fisiología , Folículo Piloso/fisiología , Mecanorreceptores/fisiología , Tacto , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Embrión de Mamíferos , Células Epiteliales/fisiología , Folículo Piloso/citología , Técnicas In Vitro , Mecanorreceptores/clasificación , Ratones , Receptor trkB/metabolismo
4.
Cell ; 147(7): 1615-27, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196735

RESUMEN

Innocuous touch of the skin is detected by distinct populations of neurons, the low-threshold mechanoreceptors (LTMRs), which are classified as Aß-, Aδ-, and C-LTMRs. Here, we report genetic labeling of LTMR subtypes and visualization of their relative patterns of axonal endings in hairy skin and the spinal cord. We found that each of the three major hair follicle types of trunk hairy skin (guard, awl/auchene, and zigzag hairs) is innervated by a unique and invariant combination of LTMRs; thus, each hair follicle type is a functionally distinct mechanosensory end organ. Moreover, the central projections of Aß-, Aδ-, and C-LTMRs that innervate the same or adjacent hair follicles form narrow LTMR columns in the dorsal horn. These findings support a model of mechanosensation in which the activities of Aß-, Aδ-, and C-LTMRs are integrated within dorsal horn LTMR columns and processed into outputs that underlie the perception of myriad touch sensations.


Asunto(s)
Cabello/fisiología , Mecanorreceptores/fisiología , Fenómenos Fisiológicos de la Piel , Piel/inervación , Animales , Axones/fisiología , Ratones , Neuronas/fisiología , Umbral Sensorial , Piel/citología , Médula Espinal/fisiología
6.
J Neurosci ; 41(5): 845-854, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33472820

RESUMEN

Spinal interneurons are important facilitators and modulators of motor, sensory, and autonomic functions in the intact CNS. This heterogeneous population of neurons is now widely appreciated to be a key component of plasticity and recovery. This review highlights our current understanding of spinal interneuron heterogeneity, their contribution to control and modulation of motor and sensory functions, and how this role might change after traumatic spinal cord injury. We also offer a perspective for how treatments can optimize the contribution of interneurons to functional improvement.


Asunto(s)
Interneuronas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Agonistas del GABA/farmacología , Agonistas del GABA/uso terapéutico , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/patología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/patología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología
7.
Proc Natl Acad Sci U S A ; 116(19): 9168-9177, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996124

RESUMEN

Innocuous mechanical stimuli acting on the skin are detected by sensory neurons, known as low-threshold mechanoreceptors (LTMRs). LTMRs are classified based on their response properties, action potential conduction velocity, rate of adaptation to static indentation of the skin, and terminal anatomy. Here, we report organizational properties of the cutaneous and central axonal projections of the five principal hairy skin LTMR subtypes. We find that axons of neurons within a particular LTMR class are largely nonoverlapping with respect to their cutaneous end organs (e.g., hair follicles), with Aß rapidly adapting-LTMRs being the sole exception. Individual neurons of each LTMR class are mostly nonoverlapping with respect to their associated hair follicles, with the notable exception of C-LTMRs, which exhibit multiple branches that redundantly innervate individual hair follicles. In the spinal cord, LTMR central projections exhibit rostrocaudal elongation and mediolateral compression, compared with their cutaneous innervation patterns, and these central projections also exhibit a fine degree of homotypic topographic adjacency. These findings thus reveal homotypic tiling of LTMR subtype axonal projections in hairy skin and a remarkable degree of spatial precision of spinal cord axonal termination patterns, suggesting a somatotopically precise tactile encoding capability of the mechanosensory dorsal horn.


Asunto(s)
Mecanorreceptores/química , Animales , Axones/química , Axones/fisiología , Humanos , Mamíferos/fisiología , Mecanorreceptores/fisiología , Ratones , Piel/química , Fenómenos Fisiológicos de la Piel , Médula Espinal/química , Médula Espinal/fisiología , Tacto
8.
Development ; 144(18): 3349-3360, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28851705

RESUMEN

The vestibular system of the inner ear detects head position using three orthogonally oriented semicircular canals; even slight changes in their shape and orientation can cause debilitating behavioral defects. During development, the canals are sculpted from pouches that protrude from the otic vesicle, the embryonic anlage of the inner ear. In the center of each pouch, a fusion plate forms where cells lose their epithelial morphology and the basement membrane breaks down. Cells in the fusing epithelia intercalate and are removed, creating a canal. In mice, fusion depends on the secreted protein netrin 1 (Ntn1), which is necessary for basement membrane breakdown, although the underlying molecular mechanism is unknown. Using gain-of-function approaches, we found that overexpression of Ntn1 in the chick otic vesicle prevented canal fusion by inhibiting apoptosis. In contrast, ectopic expression of the same chicken Ntn1 in the mouse otic vesicle, where apoptosis is less prominent, resulted in canal truncation. These findings highlight the importance of apoptosis for tissue morphogenesis and suggest that Ntn1 may play divergent cellular roles despite its conserved expression during canal morphogenesis in chicken and mouse.


Asunto(s)
Morfogénesis , Factores de Crecimiento Nervioso/metabolismo , Canales Semicirculares/embriología , Canales Semicirculares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Alelos , Animales , Apoptosis , Membrana Basal/metabolismo , Pollos , Electroporación , Proteínas Fluorescentes Verdes/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Netrina-1 , Proteínas Proto-Oncogénicas c-myc/metabolismo , Reproducibilidad de los Resultados
9.
J Neurosci ; 35(19): 7626-42, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972186

RESUMEN

The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.


Asunto(s)
Vías Aferentes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/metabolismo , Priones/metabolismo , Médula Espinal/citología , Animales , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Capsaicina/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Oncogénicas v-fos/genética , Proteínas Oncogénicas v-fos/metabolismo , Priones/genética , Receptores de Neuroquinina-1/metabolismo , Fármacos del Sistema Sensorial/farmacología
10.
Front Neuroanat ; 18: 1400015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817241

RESUMEN

Introduction: Hox genes govern rostro-caudal identity along the developing spinal cord, which has a well-defined division of function between dorsal (sensory) and ventral (motor) halves. Here we exploit developmental Hoxb8 expression, normally restricted to the dorsal cord below the obex, to genetically label spinal cord-to-brain ("spinofugal") axons. Methods: We crossed two targeted (knock-in) and two non-targeted recombinase-expressing lines (Hoxb8-IRES-Cre and Hoxb8-T2AFlpO; Hoxb8-Cre and Hoxb8-FlpO, respectively) with appropriate tdtomato-expressing reporter strains. Serial sectioning, confocal and superresolution microscopy, as well as light-sheet imaging was used to reveal robust labeling of ascending axons and their terminals in expected and unexpected regions. Results: This strategy provides unprecedented anatomical detail of ascending spinal tracts anterior to the brainstem, and reveals a previously undescribed decussating tract in the ventral hypothalamus (the spinofugal hypothalamic decussating tract, or shxt). The absence of Hoxb8-suppressing elements led to multiple instances of ectopic reporter expression in Hoxb8-Cre mice (retinal ganglion and vomeronasal axons, anterior thalamic nuclei and their projections to the anterior cingulate and retrosplenial cortices and subiculum, and a population of astrocytes at the cephalic flexure) and Hoxb8-FlpO mice (Cajal-Retzius cells of the dentate gyrus, and mesenchymal cells of the choroid plexus). While targeted transgenic lines were similar in terms of known spinofugal projections, Hoxb8-IRES-Cre reporters had an additional projection to the core of the facial motor nucleus, and more abundant Hoxb8-lineage microglia scattered throughout the brain than Hoxb8-T2A-FlpO (or any other) mice, suggesting dysregulated Hoxb8-driven reporter expression in one or both lines. Discussion: This work complements structural and connectivity atlases of the mouse central nervous system, and provides a platform upon which their reactions to injury or disease can be studied. Ectopic Hoxb8-driven recombinase expression may also be a useful tool to study structure and function of other cell populations in non-targeted lines.

11.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38164611

RESUMEN

The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.


Asunto(s)
Neuronas , Vibrisas , Ratones , Masculino , Femenino , Animales , Neuronas/fisiología , Interneuronas/fisiología , Cuerpo Estriado/metabolismo , Neostriado
12.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712022

RESUMEN

Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.

13.
Neuron ; 112(8): 1302-1327.e13, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38452762

RESUMEN

Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.


Asunto(s)
Parvalbúminas , Asta Dorsal de la Médula Espinal , Ratones , Animales , Células del Asta Posterior/fisiología , Locomoción , Interneuronas/fisiología , Médula Espinal
14.
Science ; 381(6660): 832-833, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616365

RESUMEN

The role of a mechanosensitive ion channel in sexual behavior is unveiled.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Conducta Sexual , Tacto , Vibración , Humanos , Animales , Ratones , Canales Iónicos/genética , Canales Iónicos/fisiología
15.
Neuron ; 111(18): 2811-2830.e8, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37442132

RESUMEN

Ongoing pain is driven by the activation and modulation of pain-sensing neurons, affecting physiology, motor function, and motivation to engage in certain behaviors. The complexity of the pain state has evaded a comprehensive definition, especially in non-verbal animals. Here, in mice, we used site-specific electrophysiology to define key time points corresponding to peripheral sensitivity in acute paw inflammation and chronic knee pain models. Using supervised and unsupervised machine learning tools, we uncovered sensory-evoked coping postures unique to each model. Through 3D pose analytics, we identified movement sequences that robustly represent different pain states and found that commonly used analgesics do not return an animal's behavior to a pre-injury state. Instead, these analgesics induce a novel set of spontaneous behaviors that are maintained even after resolution of evoked pain behaviors. Together, these findings reveal previously unidentified neuroethological signatures of pain and analgesia at heightened pain states and during recovery.


Asunto(s)
Analgesia , Dolor , Ratones , Animales , Analgésicos , Manejo del Dolor , Neuronas , Nocicepción
16.
Front Mol Neurosci ; 16: 1176823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603775

RESUMEN

Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop. This study establishes a new workflow for intersectional mouse-viral strategies to dissect adult spinal function based on developmental lineages in a modular fashion. To restrict manipulations to the spinal cord, we generate a brain-sparing Hoxb8FlpO mouse line restricting Flp recombinase expression to caudal tissue. Recapitulating endogenous Hoxb8 gene expression, Flp-dependent reporter expression is present in the caudal embryo starting day 9.5. This expression restricts Flp activity in the adult to the caudal brainstem and below. Hoxb8FlpO heterozygous and homozygous mice do not develop any of the sensory or locomotor phenotypes evident in Hoxb8 heterozygous or mutant animals, suggesting normal developmental function of the Hoxb8 gene and protein in Hoxb8FlpO mice. Compared to the variability of brain recombination in available caudal Cre and Flp lines, Hoxb8FlpO activity is not present in the brain above the caudal brainstem, independent of mouse genetic background. Lastly, we combine the Hoxb8FlpO mouse line with dorsal horn developmental lineage Cre mouse lines to express GFP in developmentally determined dorsal horn populations. Using GFP-dependent Cre recombinase viruses and Cre recombinase-dependent inhibitory chemogenetics, we target developmentally defined lineages in the adult. We show how developmental knock-out versus transient adult silencing of the same ROR𝛃 lineage neurons affects adult sensorimotor behavior. In summary, this new mouse line and viral approach provides a blueprint to dissect adult somatosensory circuit function using Cre/Flp genetic tools to target spinal cord interneurons based on genetic lineage.

17.
Neuron ; 109(1): 3-5, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33412095

RESUMEN

In this issue of Neuron, Gatto et al. (2021) demonstrate that tactile reflexes are driven by excitatory modules defined by location, while Peirs et al. (2021) show that the circuits implicated in the conversion of touch to pain are defined by the nature of the injury.


Asunto(s)
Reflejo , Médula Espinal , Humanos , Neuronas , Dolor , Tacto
19.
Cell Rep ; 28(2): 526-540.e6, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291586

RESUMEN

Chronic pain presents a major unmet clinical problem. The development of more effective treatments is hindered by our limited understanding of the neuronal circuits underlying sensory perception. Here, we show that parvalbumin (PV)-expressing dorsal horn interneurons modulate the passage of sensory information conveyed by low-threshold mechanoreceptors (LTMRs) directly via presynaptic inhibition and also gate the polysynaptic relay of LTMR input to pain circuits by inhibiting lamina II excitatory interneurons whose axons project into lamina I. We show changes in the functional properties of these PV interneurons following peripheral nerve injury and that silencing these cells unmasks a circuit that allows innocuous touch inputs to activate pain circuits by increasing network activity in laminae I-IV. Such changes are likely to result in the development of tactile allodynia and could be targeted for more effective treatment of mechanical pain.


Asunto(s)
Hiperalgesia/genética , Vaina de Mielina/patología , Animales , Dolor Crónico , Mecanorreceptores , Ratones
20.
J Neurosci ; 27(16): 4273-82, 2007 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-17442811

RESUMEN

During development of the CNS, secreted morphogens of the fibroblast growth factor (FGF) family have multiple effects on cell division, migration, and survival depending on where, when, and how much FGF signal is received. The consequences of misregulating the FGF pathway were studied in a mouse with decreased levels of the FGF antagonist Sef. To uncover effects in the nervous system, we focused on the auditory system, which is accessible to physiological analysis. We found that the mitogen-activated protein kinase pathway is active in the rhombic lip, a germinal zone that generates diverse types of neurons, including the cochlear nucleus complex of the auditory system. Sef is expressed immediately adjacent to the rhombic lip, overlapping with FGF15 and FGFR1, which is also present in the lip itself. This pattern suggests that Sef may normally function in non-rhombic lip cells and prevent them from responding to FGF ligand in the vicinity. Consistent with this idea, overexpression of Sef in chicks decreased the size of the auditory nuclei. Cochlear nucleus defects were also apparent in mice with reduced levels of Sef, with 13% exhibiting grossly dysmorphic cochlear nuclei and 26% showing decreased amounts of GFAP in the cochlear nucleus. Additional evidence for cochlear nucleus defects was obtained by electrophysiological analysis of Sef mutant mice, which have normal auditory thresholds but abnormal auditory brainstem responses. These results show both increases and decreases in Sef levels affect the assembly and function of the auditory brainstem.


Asunto(s)
Tronco Encefálico/crecimiento & desarrollo , Núcleo Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Factores de Crecimiento de Fibroblastos/genética , Proteínas de la Membrana/metabolismo , Animales , Embrión de Pollo , Núcleo Coclear/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Inmunohistoquímica , Ratones , Ratones Mutantes Neurológicos , Morfogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA