Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 190-201.e11, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204101

RESUMEN

The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer. We measured the placental transfer efficiency of maternal HIV and pathogen-specific IgG in US and Malawian HIV-infected mothers and their HIV-exposed uninfected and infected infants. We examined the role of maternal HIV disease progression, infant factors, placental Fc receptor expression, IgG subclass, and glycan signatures and their association with placental IgG transfer efficiency. Maternal IgG characteristics, such as binding to placentally expressed Fc receptors FcγRIIa and FcγRIIIa, and Fc region glycan profiles were associated with placental IgG transfer efficiency. Our findings suggest that Fc region characteristics modulate the selective placental transfer of IgG, with implications for maternal vaccine design and infant health.


Asunto(s)
Infecciones por VIH/transmisión , VIH/genética , Inmunoglobulina G/sangre , Transmisión Vertical de Enfermedad Infecciosa , Placenta/metabolismo , Complicaciones Infecciosas del Embarazo/virología , Receptores de IgG/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Glicosilación , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Lactante , Recién Nacido , Malaui , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Estados Unidos , Carga Viral/genética
2.
Cell ; 163(4): 988-98, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544943

RESUMEN

While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine trials. Each vaccine regimen induced a unique humoral "Fc fingerprint." Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Animales , Anticuerpos Antivirales/sangre , Citotoxicidad Celular Dependiente de Anticuerpos , Complejo Antígeno-Anticuerpo/inmunología , Ensayos Clínicos como Asunto , Diseño de Fármacos , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/sangre , Receptores Fc/inmunología
3.
Trends Immunol ; 44(5): 333-344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003949

RESUMEN

Deep learning has led to incredible breakthroughs in areas of research, from self-driving vehicles to solutions, to formal mathematical proofs. In the biomedical sciences, however, the revolutionary results seen in other fields are only now beginning to be realized. Vaccine research and development efforts represent an application with high public health significance. Protein structure prediction, immune repertoire analysis, and phylogenetics are three principal areas in which deep learning is poised to provide key advances. Here, we opine on some of the current challenges with deep learning and how they are being addressed. Despite the nascent stage of deep learning applications in immunological studies, there is ample opportunity to utilize this new technology to address the most challenging and burdensome infectious diseases confronting global populations.


Asunto(s)
Aprendizaje Profundo , Humanos , Proteínas
4.
Proc Natl Acad Sci U S A ; 120(20): e2221247120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155897

RESUMEN

The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. While considerable effort has focused on optimizing neutralization breadth and potency, it remains unclear whether augmenting the effector functions elicited by broadly neutralizing antibodies (bNAbs) may also improve their clinical potential. Among these effector functions, complement-mediated activities, which can culminate in the lysis of virions or infected cells, have been the least well studied. Here, functionally modified variants of the second-generation bNAb 10-1074 with ablated and enhanced complement activation profiles were used to examine the role of complement-associated effector functions. When administered prophylactically against simian-HIV challenge in rhesus macaques, more bNAb was required to prevent plasma viremia when complement activity was eliminated. Conversely, less bNAb was required to protect animals from plasma viremia when complement activity was enhanced. These results suggest that complement-mediated effector functions contribute to in vivo antiviral activity, and that their engineering may contribute to the further improvements in the efficacy of antibody-mediated prevention strategies.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Anticuerpos ampliamente neutralizantes , Macaca mulatta , Viremia/prevención & control , Proteínas del Sistema Complemento , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes
5.
J Infect Dis ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012796

RESUMEN

Intranasal M2SR (M2-deficient Single Replication influenza virus) vaccine induces robust immune responses in animal models and human subjects. A high-throughput multiplexed platform was used to analyze hemagglutinin-specific mucosal antibody responses in adults after a single dose of H3N2 M2SR. Nasal swab specimens were analyzed for total and hemagglutinin-specific IgA. Significant, dose-dependent increases in mucosal antibody responses to vaccine-matched and drifted H3N2 hemagglutinin were observed in M2SR vaccinated subjects regardless of baseline serum and mucosal immune status. These data suggest that M2SR induces broadly cross-reactive mucosal immune responses which may provide better protection against drifted and newly emerging influenza strains.

6.
J Infect Dis ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809190

RESUMEN

BACKGROUND: Although polioviruses (PVs) replicate in lymphoid tissue of both the pharynx and ileum, research on polio vaccine-induced mucosal immunity has predominantly focused on intestinal neutralizing and binding antibody levels measured in stool. METHODS: To investigate the extent to which routine immunization with intramuscularly injected inactivated polio vaccine (IPV) may induce nasal and pharyngeal mucosal immunity, we measured PV type-specific neutralization and immunoglobulin (Ig) G, IgA, and IgM levels in nasal secretions, adenoid cell supernatants, and sera collected from 12 children, aged 2 to 5 years, undergoing planned adenoidectomies. All participants were routinely immunized with IPV and had no known contact with live PVs. RESULTS: PV-specific mucosal neutralization was detected in nasal and adenoid samples, mostly from children who had previously received four IPV doses. Across the three PV serotypes, both nasal (Spearman's rho ≥ 0.87, p≤0.0003 for all) and adenoid (Spearman's rho ≥0.57, p≤0.05 for all) neutralization titers correlated with serum neutralization titers. In this small study sample, there was insufficient evidence to determine which Ig isotype(s) was correlated with neutralization. CONCLUSIONS: Our findings provide policy-relevant evidence that routine immunization with IPV may induce nasal and pharyngeal mucosal immunity. The observed correlations of nasal and pharyngeal mucosal neutralization with serum neutralization contrast with previous observations of distinct intestinal and serum responses to PV vaccines. Further research is warranted to determine which antibody isotype(s) correlate with polio vaccine-induced nasal and pharyngeal mucosal neutralizing activity and to understand the differences from intestinal mucosal immunity.

7.
BMC Bioinformatics ; 25(1): 218, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898392

RESUMEN

BACKGROUND: Compared to traditional supervised machine learning approaches employing fully labeled samples, positive-unlabeled (PU) learning techniques aim to classify "unlabeled" samples based on a smaller proportion of known positive examples. This more challenging modeling goal reflects many real-world scenarios in which negative examples are not available-posing direct challenges to defining prediction accuracy and robustness. While several studies have evaluated predictions learned from only definitive positive examples, few have investigated whether correct classification of a high proportion of known positives (KP) samples from among unlabeled samples can act as a surrogate to indicate model quality. RESULTS: In this study, we report a novel methodology combining multiple established PU learning-based strategies with permutation testing to evaluate the potential of KP samples to accurately classify unlabeled samples without using "ground truth" positive and negative labels for validation. Multivariate synthetic and real-world high-dimensional benchmark datasets were employed to demonstrate the suitability of the proposed pipeline to provide evidence of model robustness across varied underlying ground truth class label compositions among the unlabeled set and with different proportions of KP examples. Comparisons between model performance with actual and permuted labels could be used to distinguish reliable from unreliable models. CONCLUSIONS: As in fully supervised machine learning, permutation testing offers a means to set a baseline "no-information rate" benchmark in the context of semi-supervised PU learning inference tasks-providing a standard against which model performance can be compared.


Asunto(s)
Aprendizaje Automático , Aprendizaje Automático Supervisado , Humanos , Biología Computacional/métodos , Algoritmos
8.
PLoS Med ; 21(6): e1004329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913710

RESUMEN

BACKGROUND: Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. We conducted a multicenter, randomized, partially blinded Phase I clinical trial to evaluate the safety and serum concentrations of VRC07-523LS, administered in multiple doses and routes to healthy adults without HIV. METHODS AND FINDINGS: Participants were recruited between 2 February 2018 and 9 October 2018. A total of 124 participants were randomized to receive 5 VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), subcutaneous (SC) (T4: 2.5 mg/kg, T5: 5 mg/kg), or intramuscular (IM) (T6: 2.5 mg/kg or P6: placebo) routes at 4-month intervals. Participants and site staff were blinded to VRC07-523LS versus placebo for the IM group, while all other doses and routes were open-label. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum PK. Neutralization activity was measured in a TZM-bl assay and antidrug antibodies (ADAs) were assayed using a tiered bridging assay testing strategy. Injections and infusions were well tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusion reactions were reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals [95% CIs]) following the first administration were 29.0 µg/mL (25.2, 33.4), 58.5 µg/mL (49.4, 69.3), and 257.2 µg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 µg/mL (8.8, 13.3) and 22.8 µg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 µg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM (95% CIs) concentrations immediately prior to the second administration were 3.4 µg/mL (2.5, 4.6), 6.5 µg/mL (5.6, 7.5), and 27.2 µg/mL (23.9, 31.0) with IV dosing; 0.97 µg/mL (0.65, 1.4) and 3.1 µg/mL (2.2, 4.3) with SC dosing, and 2.6 µg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titers, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titer ADA at a lone time point. VRC07-523LS has an estimated mean half-life of 42 days across all doses and routes (95% CI: 40.5, 43.5), over twice as long as VRC01 (15 days). CONCLUSIONS: VRC07-523LS was safe and well tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens. TRIAL REGISTRATION: ClinicalTrials.gov/ NCT03387150 (posted on 21 December 2017).


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Humanos , Masculino , Femenino , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , Persona de Mediana Edad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/inmunología , Adulto Joven , Anticuerpos ampliamente neutralizantes/administración & dosificación , Anticuerpos ampliamente neutralizantes/efectos adversos , Adolescente , Inyecciones Intramusculares
9.
Trends Immunol ; 42(3): 186-197, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514459

RESUMEN

'Reverse vaccinology 2.0' aims to rationally reproduce template antibody responses, such as broadly neutralizing antibodies against human immunodeficiency virus-1. While observations of antibody convergence across individuals support the assumption that responses may be replicated, the diversity of humoral immunity and the process of antibody selection are rooted in stochasticity. Drawing from experience with in vitro antibody engineering by directed evolution, we consider how antibody selection may be driven, as in germline-targeting vaccine approaches to elicit broadly neutralizing antibodies and illustrate the potential consequences of over-defining a template antibody response. We posit that the prospective definition of template antibody responses and the odds of replicating them must be considered within the randomness of humoral immunity.


Asunto(s)
Anticuerpos Neutralizantes , VIH-1 , Formación de Anticuerpos , Anticuerpos Anti-VIH , Humanos , Estudios Prospectivos
10.
Nature ; 563(7733): E33, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30315222

RESUMEN

In this Brief Communications Arising Comment, the first three authors (Osuna, Lim and Kublin) should have been listed as equally contributing authors; this has been corrected online.

11.
Am J Transplant ; 23(5): 649-658, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773936

RESUMEN

As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacuna BNT162 , Estudios de Cohortes , Interferón gamma , Trasplante de Riñón/efectos adversos , Estudios Prospectivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , Inmunoglobulina G , Receptores de Trasplantes , Vacunación
12.
Immunogenetics ; 75(1): 1-16, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35904629

RESUMEN

Heritable polymorphisms within the human IgG locus, collectively termed allotypes, have often been linked by statistical associations, but rarely mechanistically, to a wide range of disease states. One potential explanation for these associations is that IgG allotype alters host cell receptors' affinity for IgG, dampening or enhancing an immune response depending on the nature of the change and the receptors. In this work, a panel of allotypic antibody variants were evaluated using multiplexed, label-free biophysical methods and cell-based functional assays to determine what effect, if any, human IgG polymorphisms have on antibody function. While we observed several differences in FcγR affinity among allotypes, there was little evidence of dramatically altered FcγR-based effector function or antigen recognition activity associated with this aspect of genetic variability.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Humanos , Receptores de IgG/genética , Inmunoglobulina G/genética , Inmunidad , Alotipos de Inmunoglobulinas/genética
14.
J Immunol ; 206(5): 999-1012, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33472907

RESUMEN

Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 µg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Sitios de Unión/inmunología , Línea Celular , Epítopos/inmunología , Infecciones por VIH/inmunología , Humanos , Inmunización/métodos , Región Variable de Inmunoglobulina/inmunología , Macaca mulatta/inmunología , Células THP-1/inmunología , Vacunación/métodos , Proteínas del Envoltorio Viral/inmunología
15.
Proc Natl Acad Sci U S A ; 117(31): 18754-18763, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690707

RESUMEN

Treatment of HIV infection with either antiretroviral (ARV) therapy or neutralizing monoclonal antibodies (NAbs) leads to a reduction in HIV plasma virus. Both ARVs and NAbs prevent new rounds of viral infection, but NAbs may have the additional capacity to accelerate the loss of virus-infected cells through Fc gamma receptor (FcγR)-mediated effector functions, which should affect the kinetics of plasma-virus decline. Here, we formally test the role of effector function in vivo by comparing the rate and timing of plasma-virus clearance in response to a single-dose treatment with either unmodified NAb or those with either reduced or augmented Fc function. When infused into viremic simian HIV (SHIV)-infected rhesus macaques, there was a 21% difference in slope of plasma-virus decline between NAb and NAb with reduced Fc function. NAb engineered to increase FcγRIII binding and improve antibody-dependent cellular cytotoxicity (ADCC) in vitro resulted in arming of effector cells in vivo, yet led to viral-decay kinetics similar to NAbs with reduced Fc function. These studies show that the predominant mechanism of antiviral activity of HIV NAbs is through inhibition of viral entry, but that Fc function can contribute to the overall antiviral activity, making them distinct from standard ARVs.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH , VIH-1/inmunología , Receptores de IgG/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios
16.
J Infect Dis ; 226(8): 1441-1450, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35668706

RESUMEN

BACKGROUND: Human immunodeficiency virus (HIV) infection during pregnancy is associated with reduced transplacental transfer of maternal antibodies and increased risk of severe infections in children who are exposed and uninfected with HIV. The basis of this reduced transfer of maternal immunity has not yet been defined but could involve modifications in the biophysical features of antibodies. The objective of this study was to assess the impact of maternal HIV infection on the biophysical features of serum IgG and transplacental antibody transfer. METHODS: Maternal serum IgG subclass levels, Fc glycosylation, Fc receptor (FcR) binding, and transplacental transfer of pathogen-specific maternal IgG were measured in pregnant women with HIV (WWH) and pregnant women testing negative for HIV (WNH) in Cape Town, South Africa. RESULTS: Maternal antibody profiles were strikingly different between pregnant WWH and WNH. Antibody binding to FcγR2a and FcγR2b, IgG1 and IgG3 antibodies, and agalactosylated antibodies were all elevated in WWH, whereas digalactosylated and sialylated antibodies were reduced compared to pregnant WNH. Antibody features that were elevated in WWH were also correlated with reduced transplacental transfer of vaccine antigen-specific antibodies. CONCLUSIONS: HIV infection is associated with marked alterations of biophysical features of maternal IgG and reduced placental transfer, potentially impairing antimicrobial immunity.


Asunto(s)
Infecciones por VIH , Vacunas , Niño , Femenino , Humanos , Inmunidad Materno-Adquirida , Inmunoglobulina G , Placenta/metabolismo , Embarazo , Receptores Fc , Sudáfrica
17.
J Infect Dis ; 226(2): 287-291, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-33367918

RESUMEN

In a blinded phase 1 trial (EudraCT 2017-0000908-21; NCT03430349) in Belgium, healthy adults (aged 18-50 years) previously immunized exclusively with inactivated poliovirus vaccine were administered a single dose of 1 of 2 novel type 2 oral poliovirus vaccines (nOPV2-c1: S2/cre5/S15domV/rec1/hifi3 (n = 15); nOPV2-c2: S2/S15domV/CpG40 (n = 15)) and isolated for 28 days in a purpose-built containment facility. Using stool samples collected near days 0, 14, 21, and 28, we evaluated intestinal neutralization and immunoglobulin A responses to the nOPV2s and found that nOPV2-c1 and nOPV2-c2 induced detectable poliovirus type 2-specific intestinal neutralizing responses in 40.0% and 46.7% of participants, respectively.


Asunto(s)
Poliomielitis , Poliovirus , Adolescente , Adulto , Anticuerpos Antivirales , Formación de Anticuerpos , Bélgica , Heces , Humanos , Persona de Mediana Edad , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Vacunas Atenuadas , Adulto Joven
18.
J Infect Dis ; 226(7): 1204-1214, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35188974

RESUMEN

BACKGROUND: A longitudinal study was performed to determine the breadth, kinetics, and correlations of systemic and mucosal antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Twenty-six unvaccinated adults with confirmed coronavirus disease 2019 (COVID-19) were followed for 6 months with 3 collections of blood, nasal secretions, and stool. Control samples were obtained from 16 unvaccinated uninfected individuals. SARS-CoV-2 neutralizing and binding antibody responses were respectively evaluated by pseudovirus assays and multiplex bead arrays. RESULTS: Neutralizing antibody responses to SARS-CoV-2 were detected in serum and respiratory samples for 96% (25/26) and 54% (14/26), respectively, of infected participants. Robust binding antibody responses against SARS-CoV-2 spike protein and S1, S2, and receptor binding (RBD) domains occurred in serum and respiratory nasal secretions, but not in stool samples. Serum neutralization correlated with RBD-specific immunoglobulin (Ig)G, IgM, and IgA in serum (Spearman ρ = 0.74, 0.66, and 0.57, respectively), RBD-specific IgG in respiratory secretions (ρ = 0.52), disease severity (ρ = 0.59), and age (ρ = 0.40). Respiratory mucosal neutralization correlated with RBD-specific IgM (ρ = 0.42) and IgA (ρ = 0.63). CONCLUSIONS: Sustained antibody responses occurred after SARS-CoV-2 infection. Notably, there was independent induction of IgM and IgA binding antibody and neutralizing responses in systemic and respiratory compartments. These observations have implications for current vaccine strategies and understanding SARS-CoV-2 reinfection and transmission.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Estudios Longitudinales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
19.
Clin Infect Dis ; 75(1): e695-e704, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34864935

RESUMEN

BACKGROUND: Residents of nursing homes (NHs) are at high risk of coronavirus disease 2019 (COVID-19)-related disease and death and may respond poorly to vaccination because of old age and frequent comorbid conditions. METHODS: Seventy-eight residents and 106 staff members, naive to infection or previously infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2), were recruited in NHs in Belgium before immunization with 2 doses of 30 µg BNT162b2 messenger RNA (mRNA) vaccine at days 0 and 21. Binding antibodies (Abs) to SARS-CoV-2 receptor-binding domain (RBD), spike domains S1 and S2, RBD Ab avidity, and neutralizing Abs against SARS-CoV-2 wild type and B.1.351 were assessed at days 0, 21, 28, and 49. RESULTS: SARS-CoV-2-naive residents had lower Ab responses to BNT162b2 mRNA vaccination than naive staff. These poor responses involved lower levels of immunoglobulin (Ig) G to all spike domains, lower avidity of RBD IgG, and lower levels of Abs neutralizing the vaccine strain. No naive residents had detectable neutralizing Abs to the B.1.351 variant. In contrast, SARS-CoV-2-infected residents had high responses to mRNA vaccination, with Ab levels comparable to those in infected staff. Cluster analysis revealed that poor vaccine responders included not only naive residents but also naive staff, emphasizing the heterogeneity of responses to mRNA vaccination in the general population. CONCLUSIONS: The poor Ab responses to mRNA vaccination observed in infection-naive NH residents and in some naive staff members suggest suboptimal protection against breakthrough infection, especially with variants of concern. These data support the administration of a third dose of mRNA vaccine to further improve protection of NH residents against COVID-19.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Inmunoglobulina G , Casas de Salud , ARN Mensajero , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
20.
BMC Immunol ; 23(1): 7, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172720

RESUMEN

BACKGROUND: While antibodies can provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. METHODS: We employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. RESULTS: To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. CONCLUSIONS: Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA