Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(4): e2305186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649152

RESUMEN

Nanopore sensing has been successfully used to characterize biological molecules with single-molecule resolution based on the resistive pulse sensing approach. However, its use in nanoparticle characterization has been constrained by the need to tailor the nanopore aperture size to the size of the analyte, precluding the analysis of heterogeneous samples. Additionally, nanopore sensors often require the use of high salt concentrations to improve the signal-to-noise ratio, which further limits their ability to study a wide range of nanoparticles that are unstable at high ionic strength. Here, a new paradigm in nanopore research that takes advantage of a polymer electrolyte system to comprise a conductive pulse sensing approach is presented. A finite element model is developed to explain the conductive pulse signals observed and compare these results with experiments. This system enables the analytical characterization of heterogeneous nanoparticle mixtures at low ionic strength . Furthermore, the wide applicability of the method is demonstrated by characterizing metallic nanospheres of varied sizes, plasmonic nanostars with various degrees of branching, and protein-based spherical nucleic acids with different oligonucleotide loadings. This system will complement the toolbox of nanomaterials characterization techniques to enable real-time optimization workflow for engineering a wide range of nanomaterials.


Asunto(s)
Nanopartículas , Nanoporos , Ácidos Nucleicos , Proteínas , Nanotecnología
2.
Small ; : e2308776, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054620

RESUMEN

DNA origami synthesis is a well-established technique with wide-ranging applications. In most cases, the synthesized origami must be purified to remove excess materials such as DNA oligos and other functional molecules. While several purification techniques are routinely used, all have limitations, and cannot be integrated with robotic systems. Here the use of solid-phase reversible immobilization (SPRI) beads as a scalable, high-throughput, and automatable method to purify DNA origami is demonstrated. Not only can this method remove unreacted oligos and biomolecules with yields comparable to existing methods while maintaining the high structural integrity of the origami, but it can also be integrated into an automated workflow to purify simultaneously large numbers and quantities of samples. It is envisioned that the SPRI beads purification method will improve the scalability of DNA nanostructures synthesis both for research and commercial applications.

3.
Biophys J ; 121(24): 4882-4891, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35986518

RESUMEN

DNA nanotechnology has paved the way for new generations of programmable nanomaterials. Utilizing the DNA origami technique, various DNA constructs can be designed, ranging from single tiles to the self-assembly of large-scale, complex, multi-tile arrays. This technique relies on the binding of hundreds of short DNA staple strands to a long single-stranded DNA scaffold that drives the folding of well-defined nanostructures. Such DNA nanostructures have enabled new applications in biosensing, drug delivery, and other multifunctional materials. In this study, we take advantage of the enhanced sensitivity of a solid-state nanopore that employs a poly-ethylene glycol enriched electrolyte to deliver real-time, non-destructive, and label-free fingerprinting of higher-order assemblies of DNA origami nanostructures with single-entity resolution. This approach enables the quantification of the assembly yields for complex DNA origami nanostructures using the nanostructure-induced equivalent charge surplus as a discriminant. We compare the assembly yield of four supramolecular DNA nanostructures obtained with the nanopore with agarose gel electrophoresis and atomic force microscopy imaging. We demonstrate that the nanopore system can provide analytical quantification of the complex supramolecular nanostructures within minutes, without any need for labeling and with single-molecule resolution. We envision that the nanopore detection platform can be applied to a range of nanomaterial designs and enable the analysis and manipulation of large DNA assemblies in real time.


Asunto(s)
Nanoporos , Nanoestructuras , Conformación de Ácido Nucleico , Nanoestructuras/química , ADN/química , Nanotecnología/métodos , ADN de Cadena Simple , Microscopía de Fuerza Atómica
4.
Anal Bioanal Chem ; 414(18): 5483-5492, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35233697

RESUMEN

Intracellular heterogeneity contributes significantly to cellular physiology and, in a number of debilitating diseases, cellular pathophysiology. This is greatly influenced by distinct organelle populations and to understand the aetiology of disease, it is important to have tools able to isolate and differentially analyse organelles from precise location within tissues. Here, we report the development of a subcellular biopsy technology that facilitates the isolation of organelles, such as mitochondria, from human tissue. We compared the subcellular biopsy technology to laser capture microdissection (LCM) that is the state-of-the-art technique for the isolation of cells from their surrounding tissues. We demonstrate an operational limit of  >20 µm for LCM and then, for the first time in human tissue, show that subcellular biopsy can be used to isolate mitochondria beyond this limit.


Asunto(s)
Genómica , Biopsia , Humanos , Captura por Microdisección con Láser/métodos
5.
Nano Lett ; 20(7): 5553-5561, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559088

RESUMEN

Nanopore analysis of nucleic acid is now routine, but detection of proteins remains challenging. Here, we report the systematic characterization of the effect of macromolecular crowding on the detection sensitivity of a solid-state nanopore for circular and linearized DNA plasmids, globular proteins (ß-galactosidase), and filamentous proteins (α-synuclein amyloid fibrils). We observe a remarkable ca. 1000-fold increase in the molecule count for the globular protein ß-galactosidase and a 6-fold increase in peak amplitude for plasmid DNA under crowded conditions. We also demonstrate that macromolecular crowding facilitates the study of the topology of DNA plasmids and the characterization of amyloid fibril preparations with different length distributions. A remarkable feature of this method is its ease of use; it simply requires the addition of a macromolecular crowding agent to the electrolyte. We therefore envision that macromolecular crowding can be applied to many applications in the analysis of biomolecules by solid-state nanopores.


Asunto(s)
Nanoporos , Amiloide , ADN , alfa-Sinucleína/genética
6.
Biochem Soc Trans ; 48(2): 357-365, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32267469

RESUMEN

The manipulation of cultured mammalian cells by the delivery of exogenous macromolecules is one of the cornerstones of experimental cell biology. Although the transfection of cells with DNA expressions constructs that encode proteins is routine and simple to perform, the direct delivery of proteins into cells has many advantages. For example, proteins can be chemically modified, assembled into defined complexes and subject to biophysical analyses prior to their delivery into cells. Here, we review new approaches to the injection and electroporation of proteins into cultured cells. In particular, we focus on how recent developments in nanoscale injection probes and localized electroporation devices enable proteins to be delivered whilst minimizing cellular damage. Moreover, we discuss how nanopore sensing may ultimately enable the quantification of protein delivery at single-molecule resolution.


Asunto(s)
Electroporación/métodos , Nanoporos , Nanotecnología/métodos , Animales , Membrana Celular/metabolismo , Supervivencia Celular , ADN/química , Electroporación/tendencias , Humanos , Nanopartículas , Nanotecnología/tendencias , Permeabilidad , Fenotipo , Transporte de Proteínas , Transfección
8.
Sci Rep ; 14(1): 13789, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877095

RESUMEN

Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.


Asunto(s)
ADN Mitocondrial , Heteroplasmia , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Humanos , ADN Mitocondrial/genética , Heteroplasmia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología
9.
Nat Commun ; 15(1): 4403, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782907

RESUMEN

Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.


Asunto(s)
ADN , Imagen Individual de Molécula , Humanos , Imagen Individual de Molécula/métodos , ADN/metabolismo , ADN/química , Animales , Nanotecnología/métodos , Proteínas/metabolismo , Proteínas/química , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/química , Relación Señal-Ruido
10.
Sci Adv ; 10(10): eadl0515, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446884

RESUMEN

Single-cell RNA sequencing has revolutionized our understanding of cellular heterogeneity, but routine methods require cell lysis and fail to probe the dynamic trajectories responsible for cellular state transitions, which can only be inferred. Here, we present a nanobiopsy platform that enables the injection of exogenous molecules and multigenerational longitudinal cytoplasmic sampling from a single cell and its progeny. The technique is based on scanning ion conductance microscopy (SICM) and, as a proof of concept, was applied to longitudinally profile the transcriptome of single glioblastoma (GBM) brain tumor cells in vitro over 72 hours. The GBM cells were biopsied before and after exposure to chemotherapy and radiotherapy, and our results suggest that treatment either induces or selects for more transcriptionally stable cells. We envision the nanobiopsy will contribute to transforming standard single-cell transcriptomics from a static analysis into a dynamic assay.


Asunto(s)
Perfilación de la Expresión Génica , Glioblastoma , Humanos , Citoplasma , Transcriptoma , Citosol , Bioensayo , Glioblastoma/genética
11.
Anal Chem ; 85(15): 7519-26, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23795948

RESUMEN

Dual carbon electrodes (DCEs) are quickly, easily, and cheaply fabricated by depositing pyrolytic carbon into a quartz theta nanopipet. The size of DCEs can be controlled by adjusting the pulling parameters used to make the nanopipet. When operated in generation/collection (G/C) mode, the small separation between the electrodes leads to reasonable collection efficiencies of ca. 30%. A three-dimensional finite element method (FEM) simulation is developed to predict the current response of these electrodes as a means of estimating the probe geometry. Voltammetric measurements at individual electrodes combined with generation/collection measurements provide a reasonable guide to the electrode size. DCEs are employed in a scanning electrochemical microscopy (SECM) configuration, and their use for both approach curves and imaging is considered. G/C approach curve measurements are shown to be particularly sensitive to the nature of the substrate, with insulating surfaces leading to enhanced collection efficiencies, whereas conducting surfaces lead to a decrease of collection efficiency. As a proof-of-concept, DCEs are further used to locally generate an artificial electron acceptor and to follow the flux of this species and its reduced form during photosynthesis at isolated thylakoid membranes. In addition, 2-dimensional images of a single thylakoid membrane are reported and analyzed to demonstrate the high sensitivity of G/C measurements to localized surface processes. It is finally shown that individual nanometer-size electrodes can be functionalized through the selective deposition of platinum on one of the two electrodes in a DCE while leaving the other one unmodified. This provides an indication of the future versatility of this type of probe for nanoscale measurements and imaging.


Asunto(s)
Carbono/química , Microscopía Electroquímica de Rastreo/instrumentación , Electrodos , Imagen Molecular , Nanotecnología , Cuarzo/química , Tilacoides/metabolismo
12.
Anal Chem ; 85(19): 9333-42, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24004146

RESUMEN

Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.


Asunto(s)
Capsaicina/metabolismo , Ganglios Espinales/química , Nanotecnología/instrumentación , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/química , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Canales Catiónicos TRPV/química
13.
ACS Nanosci Au ; 3(2): 172-181, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37096230

RESUMEN

Solid-state nanopores have been widely employed in the detection of biomolecules, but low signal-to-noise ratios still represent a major obstacle in the discrimination of nucleic acid and protein sequences substantially smaller than the nanopore diameter. The addition of 50% poly(ethylene) glycol (PEG) to the external solution is a simple way to enhance the detection of such biomolecules. Here, we demonstrate with finite-element modeling and experiments that the addition of PEG to the external solution introduces a strong imbalance in the transport properties of cations and anions, drastically affecting the current response of the nanopore. We further show that the strong asymmetric current response is due to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to either ion depletion or enrichment for few tens of nanometers across its aperture. We provide evidence that a combination of the decreased/increased diffusion coefficients of cations/anions in the bath outside the nanopore and the interaction between a translocating molecule and the nanopore-bath interface is responsible for the increase in the translocation signals. We expect this new mechanism to contribute to further developments in nanopore sensing by suggesting that tuning the diffusion coefficients of ions could enhance the sensitivity of the system.

14.
ACS Nano ; 16(12): 20075-20085, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36279181

RESUMEN

Nanopore systems have emerged as a leading platform for the analysis of biomolecular complexes with single-molecule resolution. The conformation of biomolecules, such as RNA, is highly dependent on the electrolyte composition, but solid-state nanopore systems often require high salt concentration to operate, precluding analysis of macromolecular conformations under physiologically relevant conditions. Here, we report the implementation of a polymer-electrolyte solid-state nanopore system based on alkali metal halide salts dissolved in 50% w/v poly(ethylene) glycol (PEG) to augment the performance of our system. We show that polymer-electrolyte bath governs the translocation dynamics of the analyte which correlates with the physical properties of the salt used in the bath. This allowed us to identify CsBr as the optimal salt to complement PEG to generate the largest signal enhancement. Harnessing the effects of the polymer-electrolyte, we probed the conformations of the Chikungunya virus (CHIKV) RNA genome fragments under physiologically relevant conditions. Our system was able to fingerprint CHIKV RNA fragments ranging from ∼300 to ∼2000 nt length and subsequently distinguish conformations between the co-transcriptionally folded and the natively refolded ∼2000 nt CHIKV RNA. We envision that the polymer-electrolyte solid-state nanopore system will further enable structural and conformational analyses of individual biomolecules under physiologically relevant conditions.


Asunto(s)
Nanoporos , Polímeros/química , Polietilenglicoles/química , Electrólitos/química , Conformación de Ácido Nucleico
15.
Anal Chem ; 83(16): 6121-6, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21761859

RESUMEN

The calcium ion response of a quartz nanopipette was enhanced by immobilization of calmodulin to the nanopore surface. Binding to the analyte is rapidly reversible in neutral buffer and requires no change in media or conditions to regenerate the receptor. The signal remained reproducible over numerous measurements. The modified nanopipette was used to measure binding affinity to calcium ions, with a K(d) of 6.3 ± 0.8 × 10(-5) M. This affinity is in good agreement with reported values of the solution-state protein. The behavior of such reversible nanopore-based sensors can be used to study proteins in a confined environment and may lead to new devices for continuous monitoring.


Asunto(s)
Técnicas Biosensibles/instrumentación , Calcio/análisis , Calmodulina/metabolismo , Proteínas Inmovilizadas/metabolismo , Nanoestructuras/química , Nanotecnología , Calcio/metabolismo , Calmodulina/química , Cationes/análisis , Cationes/metabolismo , Proteínas Inmovilizadas/química , Cinética , Nanotecnología/instrumentación , Nanotecnología/métodos , Unión Proteica , Cuarzo/química
16.
Langmuir ; 27(10): 6528-33, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21510657

RESUMEN

Most of the research in the field of nanopore-based platforms is focused on monitoring ion currents and forces as individual molecules translocate through the nanopore. Molecular gating, however, can occur when target analytes interact with receptors appended to the nanopore surface. Here we show that a solid state nanopore functionalized with polyelectrolytes can reversibly bind metal ions, resulting in a reversible, real-time signal that is concentration dependent. Functionalization of the sensor is based on electrostatic interactions, requires no covalent bond formation, and can be monitored in real time. Furthermore, we demonstrate how the applied voltage can be employed to tune the binding properties of the sensor. The sensor has wide-ranging applications and, its simplest incarnation can be used to study binding thermodynamics using purely electrical measurements with no need for labeling.


Asunto(s)
Electricidad , Electrólitos/química , Metales/análisis , Metales/química , Nanoporos , Polímeros/química , Técnicas Biosensibles , Quitosano/química , Concentración de Iones de Hidrógeno , Reproducibilidad de los Resultados , Factores de Tiempo
19.
Nat Commun ; 11(1): 4384, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873796

RESUMEN

The ability to detect low concentrations of biomarkers in patient samples is one of the cornerstones of modern healthcare. In general, biosensing approaches are based on measuring signals resulting from the interaction of a large ensemble of molecules with the sensor. Here, we report a biosensor platform using DNA origami featuring a central cavity with a target-specific DNA aptamer coupled with a nanopore read-out to enable individual biomarker detection. We show that the modulation of the ion current through the nanopore upon the DNA origami translocation strongly depends on the presence of the biomarker in the cavity. We exploit this to generate a biosensing platform with a limit of detection of 3 nM and capable of the detection of human C-reactive protein (CRP) in clinically relevant fluids. Future development of this approach may enable multiplexed biomarker detection by using ribbons of DNA origami with integrated barcoding.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , ADN/química , Nanoestructuras/química , Imagen Individual de Molécula/instrumentación , Biomarcadores/análisis , Proteína C-Reactiva/análisis , Diseño de Equipo , Humanos , Límite de Detección , Nanotecnología/métodos
20.
Wellcome Open Res ; 5: 226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33718619

RESUMEN

Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst, there are several single-cell technologies that are currently available, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria, from subcellular compartments, with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA