Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 571(7766): 505-509, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243369

RESUMEN

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Transcriptoma/genética , Animales , Evolución Biológica , Pollos/genética , Femenino , Humanos , Macaca mulatta/genética , Masculino , Ratones , Zarigüeyas/genética , Conejos , Ratas
2.
Heredity (Edinb) ; 132(2): 77-88, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985738

RESUMEN

Investigating the impact of landscape features on patterns of genetic variation is crucial to understand spatially dependent evolutionary processes. Here, we assess the population genomic variation of two bird species (Conopophaga cearae and Sclerurus cearensis) through the Caatinga moist forest enclaves in northeastern Brazil. To infer the evolutionary dynamics of bird populations through the Late Quaternary, we used genome-wide polymorphism data obtained from double-digestion restriction-site-associated DNA sequencing (ddRADseq), and integrated population structure analyses, historical demography models, paleodistribution modeling, and landscape genetics analyses. We found the population differentiation among enclaves to be significantly related to the geographic distance and historical resistance across the rugged landscape. The climate changes at the end of the Pleistocene to the Holocene likely triggered synchronic population decline in all enclaves for both species. Our findings revealed that both geographic distance and historical connectivity through highlands are important factors that can explain the current patterns of genetic variation. Our results further suggest that levels of population differentiation and connectivity cannot be explained purely on the basis of contemporary environmental conditions. By combining historical demographic analyses and niche modeling predictions in a historical framework, we provide strong evidence that climate fluctuations of the Quaternary promoted population differentiation and a high degree of temporal synchrony among population size changes in both species.


Asunto(s)
Variación Genética , Metagenómica , Animales , Brasil , Bosques , Aves/genética , Genética de Población , Filogenia , Ecosistema
3.
PLoS Genet ; 17(2): e1009404, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33621224

RESUMEN

Birds exhibit striking variation in eye color that arises from interactions between specialized pigment cells named chromatophores. The types of chromatophores present in the avian iris are lacking from the integument of birds or mammals, but are remarkably similar to those found in the skin of ectothermic vertebrates. To investigate molecular mechanisms associated with eye coloration in birds, we took advantage of a Mendelian mutation found in domestic pigeons that alters the deposition of yellow pterin pigments in the iris. Using a combination of genome-wide association analysis and linkage information in pedigrees, we mapped variation in eye coloration in pigeons to a small genomic region of ~8.5kb. This interval contained a single gene, SLC2A11B, which has been previously implicated in skin pigmentation and chromatophore differentiation in fish. Loss of yellow pigmentation is likely caused by a point mutation that introduces a premature STOP codon and leads to lower expression of SLC2A11B through nonsense-mediated mRNA decay. There were no substantial changes in overall gene expression profiles between both iris types as well as in genes directly associated with pterin metabolism and/or chromatophore differentiation. Our findings demonstrate that SLC2A11B is required for the expression of pterin-based pigmentation in the avian iris. They further highlight common molecular mechanisms underlying the production of coloration in the iris of birds and skin of ectothermic vertebrates.


Asunto(s)
Columbidae/genética , Color del Ojo/genética , Iris/metabolismo , Pigmentación/genética , Pigmentación de la Piel/genética , Vertebrados/genética , Animales , Cromatóforos/metabolismo , Columbidae/metabolismo , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Mutación , Estabilidad del ARN/genética , Vertebrados/metabolismo , Secuenciación Completa del Genoma/métodos
4.
PLoS Genet ; 17(3): e1009429, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33764968

RESUMEN

Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d'Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.


Asunto(s)
Marcha/genética , Locomoción/genética , Mutación con Pérdida de Función , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Estudios de Asociación Genética , Genoma , Genómica/métodos , Interneuronas/metabolismo , Fenotipo , Sitios de Empalme de ARN , Conejos , Médula Espinal/metabolismo
5.
J Evol Biol ; 35(4): 648-656, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35225411

RESUMEN

Long-term maintenance of colour polymorphisms often depends on the interplay of multiple selective forces. In the common wall lizard (Podarcis muralis), up to three pure and two mosaic ventral colour morphs co-exist across most of its range. Available evidence suggests that colour morphs in this species are maintained through the interaction between sexual and environment-dependent selection. In particular, colour-assortative pairing has been recorded, suggesting some degree of assortative mating. Here, we combined reduced-representation sequencing (ddRADseq) and fine-scale distribution data to explore the effects of assortative pairing on the common wall lizard. Overall, our results do not support any population structure (FST  = 0 and K = 1) nor a significant effect of colour morph or geographic location on genomic differentiation. Therefore, we argue that assortative pairing may not fully translate into assortative mating and genomic differentiation between colour morphs and discuss possible explanations. Nonetheless, we find potential support for an elevated population size and/or source-sink dynamics and debate the potential contribution of other forms of selection to the maintenance of colour polymorphisms in lacertids.


Asunto(s)
Lagartos , Animales , Genómica , Lagartos/genética , Pigmentación/genética , Polimorfismo Genético , Reproducción
6.
Proc Natl Acad Sci U S A ; 116(12): 5633-5642, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30819892

RESUMEN

Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.


Asunto(s)
Lagartos/genética , Pigmentación de la Piel/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/fisiología , Animales , Carotenoides/genética , Carotenoides/metabolismo , Color , Dioxigenasas/genética , Lagartos/metabolismo , Pigmentación/genética , Polimorfismo Genético/genética , Pterinas/metabolismo
7.
Mol Biol Evol ; 37(5): 1317-1328, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31930402

RESUMEN

Unlike wild and domestic canaries (Serinus canaria), or any of the three dozen species of finches in genus Serinus, the domestic urucum breed of canaries exhibits bright red bills and legs. This novel trait offers a unique opportunity to understand the mechanisms of bare-part coloration in birds. To identify the mutation producing the colorful phenotype, we resequenced the genome of urucum canaries and performed a range of analyses to search for genotype-to-phenotype associations across the genome. We identified a nonsynonymous mutation in the gene BCO2 (beta-carotene oxygenase 2, also known as BCDO2), an enzyme involved in the cleavage and breakdown of full-length carotenoids into short apocarotenoids. Protein structural models and in vitro functional assays indicate that the urucum mutation abrogates the carotenoid-cleavage activity of BCO2. Consistent with the predicted loss of carotenoid-cleavage activity, urucum canaries tended to have increased levels of full-length carotenoid pigments in bill tissue and reduced levels of carotenoid-cleavage products (apocarotenoids) in retinal tissue compared with other breeds of canaries. We hypothesize that carotenoid-based bare-part coloration might be readily gained, modified, or lost through simple switches in the enzymatic activity or regulation of BCO2 and this gene may be an important mediator in the evolution of bare-part coloration among bird species.


Asunto(s)
Canarios/genética , Carotenoides/metabolismo , Pigmentación/genética , Sustitución de Aminoácidos , Animales , Canarios/metabolismo , Genes Recesivos , Oxigenasas de Función Mixta/metabolismo , Fenotipo
8.
Proc Natl Acad Sci U S A ; 115(28): 7380-7385, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941556

RESUMEN

The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.


Asunto(s)
Conducta Animal/fisiología , Domesticación , Miedo/fisiología , Sustancia Gris , Corteza Prefrontal , Sustancia Blanca , Animales , Sustancia Gris/anatomía & histología , Sustancia Gris/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Conejos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología
9.
J Environ Manage ; 284: 112105, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33567356

RESUMEN

The harvesting of hops (Humulus lupulus L.) generates large amounts of nutrient-rich leaves that can be used in composting mixtures to add value to other organic resources on the farm. In this study, hop leaves were mixed with cow manure and wheat straw in several combinations with the aim of establishing guidelines on how farmers can manage the raw materials and better use these valuable organic resources. The composting process was monitored and the quality of the composts evaluated in relation to the effects on lettuce (Lactuca sativa L.) grown in pots over two consecutive cycles. The mixture of hop leaves with cow manure produced a stable compost after nine months of composting which may be used in horticultural crops, irrespective of the proportion of raw materials, due to their low and similar C/N ratios. However, when using mixtures of leaves and straw in proportions of less than 2:1, the composts did not mature properly, showing high C/N ratios. Their application to the soil led to a strong reduction in plant tissue N concentrations, due to biological N immobilization, which significantly reduced lettuce dry matter yield. Thus, to reduce composting time and increase the quality of the compost, the ratio leaves/straw should be as high as possible, at least 2:1. Alternatively, either the composting process should take longer, or the poorly-matured compost be applied far in advance of sowing a crop so that complementary biological processes can take place in the soil, as recorded in the second cycle of lettuce. Ash from hop stems did not benefit the composting process and proved itself not to be worth using in mixtures.


Asunto(s)
Compostaje , Humulus , Estiércol , Nutrientes , Hojas de la Planta , Suelo , Triticum
10.
Proc Natl Acad Sci U S A ; 114(20): 5219-5224, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28465440

RESUMEN

Yellow, orange, and red coloration is a fundamental aspect of avian diversity and serves as an important signal in mate choice and aggressive interactions. This coloration is often produced through the deposition of diet-derived carotenoid pigments, yet the mechanisms of carotenoid uptake and transport are not well-understood. The white recessive breed of the common canary (Serinus canaria), which carries an autosomal recessive mutation that renders its plumage pure white, provides a unique opportunity to investigate mechanisms of carotenoid coloration. We carried out detailed genomic and biochemical analyses comparing the white recessive with yellow and red breeds of canaries. Biochemical analysis revealed that carotenoids are absent or at very low concentrations in feathers and several tissues of white recessive canaries, consistent with a genetic defect in carotenoid uptake. Using a combination of genetic mapping approaches, we show that the white recessive allele is due to a splice donor site mutation in the scavenger receptor B1 (SCARB1; also known as SR-B1) gene. This mutation results in abnormal splicing, with the most abundant transcript lacking exon 4. Through functional assays, we further demonstrate that wild-type SCARB1 promotes cellular uptake of carotenoids but that this function is lost in the predominant mutant isoform in white recessive canaries. Our results indicate that SCARB1 is an essential mediator of the expression of carotenoid-based coloration in birds, and suggest a potential link between visual displays and lipid metabolism.


Asunto(s)
Carotenoides/fisiología , Plumas/metabolismo , Lipoproteínas HDL/metabolismo , Receptores de Lipoproteína/metabolismo , Receptores Depuradores de Clase B/metabolismo , Pájaros Cantores/fisiología , Animales , Carotenoides/genética , Carotenoides/metabolismo , Dieta , Pigmentación/fisiología , Receptores Depuradores de Clase B/genética , Pájaros Cantores/genética
11.
J Emerg Med ; 59(1): 153-160, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32349880

RESUMEN

BACKGROUND: Knowing the distinctive features of patients with the highest utilization of the emergency department (ED) is paramount to finding adequate alternatives to ED care for selected patients and improving health care quality and efficiency. OBJECTIVE: This study aimed to identify ED high-frequency users and compare their clinical and utilization characteristics with other ED users. METHODS: Secondary data analysis of ED visits and patients database from a Portuguese public urban hospital. Retrospective study of adults visiting the ED in 2016 (61,403 patients; 95,643 visits), comparing demographic and clinical characteristics of patients and clinical and temporal characteristics of ED visits between high-frequency users (>10 ED visits in 2016) and frequent (4-10 ED visits) and nonfrequent (1-3 ED visits) users. RESULTS: We identified 169 high-frequency users (0.3% of patients and 3.0% of ED visits) with an average number of 16.9 visits in 2016. Patients in this group were older (61.8 years; frequent users: 61.2 years; nonfrequent users: 53.4 years; p < 0.01) and required immediate and mental health care more frequently (18.6% of high-frequency users, 17.4% of frequent users, 13.5% of nonfrequent users, and 6.6%; 3.3%, 2.3%; p < 0.01). High-frequency users also used the ED for nonurgent reasons more than remaining groups (6.1%, 3.5%, 3.1%; p < 0.01). CONCLUSION: High-frequency users are an aged and heterogeneous group, requiring tailored interventions to improve care.


Asunto(s)
Servicio de Urgencia en Hospital , Adulto , Anciano , Humanos , Estudios Retrospectivos
12.
BMC Genomics ; 20(1): 334, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053061

RESUMEN

BACKGROUND: Iberian primitive breeds exhibit a remarkable phenotypic diversity over a very limited geographical space. While genomic data are accumulating for most commercial cattle, it is still lacking for these primitive breeds. Whole genome data is key to understand the consequences of historic breed formation and the putative role of earlier admixture events in the observed diversity patterns. RESULTS: We sequenced 48 genomes belonging to eight Iberian native breeds and found that the individual breeds are genetically very distinct with FST values ranging from 4 to 16% and have levels of nucleotide diversity similar or larger than those of their European counterparts, namely Jersey and Holstein. All eight breeds display significant gene flow or admixture from African taurine cattle and include mtDNA and Y-chromosome haplotypes from multiple origins. Furthermore, we detected a very low differentiation of chromosome X relative to autosomes within all analyzed taurine breeds, potentially reflecting male-biased gene flow. CONCLUSIONS: Our results show that an overall complex history of admixture resulted in unexpectedly high levels of genomic diversity for breeds with seemingly limited geographic ranges that are distantly located from the main domestication center for taurine cattle in the Near East. This is likely to result from a combination of trading traditions and breeding practices in Mediterranean countries. We also found that the levels of differentiation of autosomes vs sex chromosomes across all studied taurine and indicine breeds are likely to have been affected by widespread breeding practices associated with male-biased gene flow.


Asunto(s)
Cruzamiento , Bovinos/genética , Variación Genética , Genética de Población , Genoma , Genómica/métodos , Animales , Bovinos/clasificación , Cromosomas de los Mamíferos , ADN Mitocondrial/genética , Europa (Continente) , Femenino , Flujo Génico , Genotipo , Haplotipos , Masculino , Repeticiones de Microsatélite , Filogenia , Cromosoma Y
13.
BMC Genomics ; 20(1): 645, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409288

RESUMEN

BACKGROUND: Venom has evolved in parallel in multiple animals for the purpose of self-defense, prey capture or both. These venoms typically consist of highly complex mixtures of toxins: diverse bioactive peptides and/or proteins each with a specific pharmacological activity. Because of their specificity, they can be used as experimental tools to study cell mechanisms and develop novel medicines and drugs. It is therefore potentially valuable to explore the venoms of various animals to characterize their toxins and identify novel toxin-families. This study focuses on the annotation and exploration of the transcriptomes of six scorpion species from three different families. The transcriptomes were annotated with a custom-built automated pipeline, primarily consisting of Basic Local Alignment Search Tool searches against UniProt databases and filter steps based on transcript coverage. RESULTS: We annotated the transcriptomes of four scorpions from the family Buthidae, one from Iuridae and one from Diplocentridae using our annotation pipeline. We found that the four buthid scorpions primarily produce disulfide-bridged ion-channel targeting toxins, while the non-buthid scorpions have a higher abundance of non-disulfide-bridged toxins. Furthermore, analysis of the "unidentified" transcripts resulted in the discovery of six novel putative toxin families containing a total of 37 novel putative toxins. Additionally, 33 novel toxins in existing toxin-families were found. Lastly, 19 novel putative secreted proteins without toxin-like disulfide bonds were found. CONCLUSIONS: We were able to assign most transcripts to a toxin family and classify the venom composition for all six scorpions. In addition to advancing our fundamental knowledge of scorpion venomics, this study may serve as a starting point for future research by facilitating the identification of the venom composition of scorpions and identifying novel putative toxin families.


Asunto(s)
Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Escorpiones/genética , Toxinas Biológicas/genética , Animales
14.
Mol Biol Evol ; 35(5): 1176-1189, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29547891

RESUMEN

Racing pigeons have been selectively bred to find their way home quickly over what are often extremely long distances. This breed is of substantial commercial value and is also an excellent avian model to gain empirical insights into the evolution of traits associated with flying performance and spatial orientation. Here, we investigate the molecular basis of the superior athletic and navigational capabilities of racing pigeons using whole-genome and RNA sequencing data. We inferred multiple signatures of positive selection distributed across the genome of racing pigeons. The strongest signature overlapped the CASK gene, a gene implicated in the formation of neuromuscular junctions. However, no diagnostic alleles were found between racing pigeons and other breeds, and only a small proportion of highly differentiated variants were exclusively detected in racing pigeons. We can thus conclude that very few individual genetic changes, if any, are either strictly necessary or sufficient for superior athletics and navigation. Gene expression analysis between racing and nonracing breeds revealed modest differences in muscle (213) and brain (29). These transcripts, however, showed only slightly elevated levels of genetic differentiation between the two groups, suggesting that most differential expression is not causative but likely a consequence of alterations in regulatory networks. Our results show that the unique suite of traits that enable fast flight, long endurance, and accurate navigation in racing pigeons, do not result from few loci acting as master switches but likely from a polygenic architecture that leveraged standing genetic variation available at the onset of the breed formation.


Asunto(s)
Encéfalo/metabolismo , Columbidae/genética , Músculos Pectorales/metabolismo , Selección Genética , Animales , Columbidae/metabolismo , Femenino , Frecuencia de los Genes , Variación Genética , Secuenciación Completa del Genoma
15.
Proc Biol Sci ; 285(1888)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282656

RESUMEN

Discrete colour morphs coexisting within a single population are common in nature. In a broad range of organisms, sympatric colour morphs often display major differences in other traits, including morphology, physiology or behaviour. Despite the repeated occurrence of this phenomenon, our understanding of the genetics that underlie multi-trait differences and the factors that promote the long-term maintenance of phenotypic variability within a freely interbreeding population are incomplete. Here, we investigated the genetic basis of red and black head colour in the Gouldian finch (Erythrura gouldiae), a classic polymorphic system in which naturally occurring colour morphs also display differences in aggressivity and reproductive success. We show that the candidate locus is a small (approx. 70 kb) non-coding region mapping to the Z chromosome near the Follistatin (FST) gene. Unlike recent findings in other systems where phenotypic morphs are explained by large inversions containing hundreds of genes (so-called supergenes), we did not identify any structural rearrangements between the two haplotypes using linked-read sequencing technology. Nucleotide divergence between the red and black alleles was high when compared to the remainder of the Z chromosome, consistent with their maintenance as balanced polymorphisms over several million years. Our results illustrate how pleiotropic phenotypes can arise from simple genetic variation, probably regulatory in nature.


Asunto(s)
Proteínas Aviares/genética , Folistatina/genética , Pigmentación/genética , Polimorfismo Genético/fisiología , Cromosomas Sexuales/genética , Pájaros Cantores/fisiología , Animales , Proteínas Aviares/metabolismo , Color , Pinzones/crecimiento & desarrollo , Pinzones/fisiología , Folistatina/metabolismo , Análisis de Secuencia de ARN , Pájaros Cantores/genética
16.
Mol Ecol ; 27(6): 1457-1478, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29359877

RESUMEN

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.


Asunto(s)
Aberraciones Cromosómicas , Regulación de la Expresión Génica/genética , Especiación Genética , Aislamiento Reproductivo , Animales , Frecuencia de los Genes , Masculino , Modelos Genéticos , Sitios de Carácter Cuantitativo/genética , Conejos , Testículo/metabolismo , Secuenciación Completa del Genoma
17.
PLoS Genet ; 10(8): e1003519, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25166595

RESUMEN

The analysis of introgression of genomic regions between divergent populations provides an excellent opportunity to determine the genetic basis of reproductive isolation during the early stages of speciation. However, hybridization and subsequent gene flow must be relatively common in order to localize individual loci that resist introgression. In this study, we used next-generation sequencing to study genome-wide patterns of genetic differentiation between two hybridizing subspecies of rabbits (Oryctolagus cuniculus algirus and O. c. cuniculus) that are known to undergo high rates of gene exchange. Our primary objective was to identify specific genes or genomic regions that have resisted introgression and are likely to confer reproductive barriers in natural conditions. On the basis of 326,000 polymorphisms, we found low to moderate overall levels of differentiation between subspecies, and fewer than 200 genomic regions dispersed throughout the genome showing high differentiation consistent with a signature of reduced gene flow. Most differentiated regions were smaller than 200 Kb and contained very few genes. Remarkably, 30 regions were each found to contain a single gene, facilitating the identification of candidate genes underlying reproductive isolation. This gene-level resolution yielded several insights into the genetic basis and architecture of reproductive isolation in rabbits. Regions of high differentiation were enriched on the X-chromosome and near centromeres. Genes lying within differentiated regions were often associated with transcription and epigenetic activities, including chromatin organization, regulation of transcription, and DNA binding. Overall, our results from a naturally hybridizing system share important commonalities with hybrid incompatibility genes identified using laboratory crosses in mice and flies, highlighting general mechanisms underlying the maintenance of reproductive barriers.


Asunto(s)
Especiación Genética , Genética de Población , Hibridación Genética , Aislamiento Reproductivo , Animales , Centrómero , Europa (Continente) , Flujo Génico , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Conejos , Cromosoma X
18.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37943814

RESUMEN

Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.


Asunto(s)
Melaninas , Loros , Humanos , Animales , Melaninas/genética , Plumas/química , Plumas/metabolismo , Mutación , Loros/metabolismo , Fenotipo , Pigmentación/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Transporte de Membrana/genética
19.
Nat Ecol Evol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907020

RESUMEN

Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild-domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.

20.
Sci Adv ; 10(17): eadl5255, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657058

RESUMEN

Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.


Asunto(s)
Polimorfismo Genético , Animales , Femenino , Masculino , Aves/genética , Fenotipo , Evolución Biológica , Pigmentación/genética , Caracteres Sexuales , Evolución Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA