Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 56(3): 112, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526648

RESUMEN

The study assessed the quality and variability of camel hair fibres in arid regions of Egypt. Raw camel-hair samples were collected from fifteen Sudanese camels divided into seven males (414.60 ± 38.19 kg, BW) and eight females (401.67 ± 26.76 kg BW), and the study investigated the influences of animal sex on both the physical and chemical traits of camel-hair fibers. The relationships among physical properties and both mineral and amino acid content were studied. Camel's sex had no significant effect on any of the studied traits including fibre diameter (FD), prickle factor (PF), medullated fibre (MF), staple length (SL) and staple strength (SS). In the meantime, no significant differences were found between males and females in fibers' minerals contents except potassium, where fibres of females had significantly higher potassium content than those of males. For amino acids contents in camel fibres, camel sex had a significant effect only on glutamic acid, since fibres of males showed higher (P < 0.05) content than females. Fibre diameter had positive (P < 0.01) correlations with prickle factor (r = 0.83) and medullated fibres (r = 0.73). Zinc content in camel fibres was positively correlated with fibre diameter (r = 0.57; P < 0.05) and medullated fibres (r = 0.73; P < 0.01). Moreover, a significant (negative correlation coefficient P < 0.05) was found between fibre diameter and both sulfur and proline contents (r=-0.39 and - 0.56). Ammonia content in fibres was correlated negatively (P < 0.05) with prickle factor and elongation (r=-0.62 and - 0.58, respectively). The variability in the physical properties and chemical composition of Sudanese camel-hair fibers under subtropical desert conditions may shed light on the possibility of improving fiber quality.


Asunto(s)
Camelus , Cabello , Masculino , Femenino , Animales , Minerales , Potasio , Egipto
2.
Animals (Basel) ; 14(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39335341

RESUMEN

The animal gastrointestinal tract contains a complex microbiome whose composition ultimately reflects the co-evolution of microorganisms with their animal host and their host's environment. This study aimed to gain insights into the adaptation of the microbiota of local Egyptian cattle to three different ecosystems (Upper Egypt, Middle Egypt, and Lower Egypt) distributed across 11 governorates (with an average of 12 animals per governorate) using amplicon sequencing. We analyzed the microbiota from 136 fecal samples of local Egyptian cattle through a 16S rRNA gene sequencing approach to better understand the fecal microbial diversity of this breed which developed under different ecosystems. An alpha diversity analysis showed that the fecal microbiota of the Egyptian cattle was not significantly diverse across areas, seasons, sexes, or farm types. Meanwhile, microbiota data revealed significant differences in richness among age groups (p = 0.0018). The microbial community differed significantly in the distribution of its relative abundance rather than in richness across different ecosystems. The taxonomic analysis of the reads identified Firmicutes and Actinobacteriota as the dominant phyla, accounting for over 93% of the total bacterial community in Egyptian cattle. Middle Egypt exhibited a different microbial community composition compared to Upper and Lower Egypt, with a significantly higher abundance of Firmicutes and Euryarchaeota and a lower abundance of Actinobacteriota in this region than the other two ecosystems. Additionally, Middle Egypt had a significantly higher relative abundance of the Methanobacteriaceae family and the Methanobrevibacter genera than Lower and Upper Egypt. These results suggest a difference in the adaptation of the fecal microbial communities of Egyptian cattle raised in Middle Egypt. At the genus level, eleven genera were significantly different among the three ecosystems including Bacillus, DNF00809, Kandleria, Lachnospiraceae_NK3A20_group, Methanobrevibacter, Mogibacterium, Olsenella, Paeniclostridium, Romboutsia, Turicibacter, and UCG-005. These significant differences in microbiota composition may impact the animal's adaptation to varied environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA