Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Syst ; 47(1): 57, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129723

RESUMEN

Alzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach-"fusion of end-to-end and transfer learning"-to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Diagnóstico Precoz , Disfunción Cognitiva/diagnóstico por imagen
2.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408133

RESUMEN

New computational methods have emerged through science and technology to support the diagnosis of mental health disorders. Predictive models developed from machine learning algorithms can identify disorders such as schizophrenia and support clinical decision making. This research aims to compare the performance of machine learning algorithms: Decision Tree, AdaBoost, Random Forest, Naïve Bayes, Support Vector Machine, and k-Nearest Neighbor in the prediction of hospitalized patients with schizophrenia. The data set used in the study contains a total of 11,884 electronic admission records corresponding to 6933 patients with various mental health disorders; these records belong to the acute units of 11 public hospitals in a region of Spain. Of the total, 5968 records correspond to patients diagnosed with schizophrenia (3002 patients) and 5916 records correspond to patients with other mental health disorders (3931 patients). The results recommend Random Forest with the best accuracy of 72.7%. Furthermore, this algorithm presents 79.6%, 72.8%, 72.7%, and 72.7% for AUC, precision, F1-Score, and recall, respectively. The results obtained suggest that the use of machine learning algorithms can classify hospitalized patients with schizophrenia in this population and help in the hospital management of this type of disorder, to reduce the costs associated with hospitalization.


Asunto(s)
Esquizofrenia , Algoritmos , Teorema de Bayes , Humanos , Aprendizaje Automático , Esquizofrenia/diagnóstico , Máquina de Vectores de Soporte
3.
Sensors (Basel) ; 21(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34770565

RESUMEN

Alzheimer's disease (AD) is a remarkable challenge for healthcare in the 21st century. Since 2017, deep learning models with transfer learning approaches have been gaining recognition in AD detection, and progression prediction by using neuroimaging biomarkers. This paper presents a systematic review of the current state of early AD detection by using deep learning models with transfer learning and neuroimaging biomarkers. Five databases were used and the results before screening report 215 studies published between 2010 and 2020. After screening, 13 studies met the inclusion criteria. We noted that the maximum accuracy achieved to date for AD classification is 98.20% by using the combination of 3D convolutional networks and local transfer learning, and that for the prognostic prediction of AD is 87.78% by using pre-trained 3D convolutional network-based architectures. The results show that transfer learning helps researchers in developing a more accurate system for the early diagnosis of AD. However, there is a need to consider some points in future research, such as improving the accuracy of the prognostic prediction of AD, exploring additional biomarkers such as tau-PET and amyloid-PET to understand highly discriminative feature representation to separate similar brain patterns, managing the size of the datasets due to the limited availability.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Encéfalo , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
4.
Appl Soft Comput ; 96: 106691, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33519327

RESUMEN

COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors' knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA