Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Learn Mem ; 19(3): 116-25, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22366775

RESUMEN

Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment.


Asunto(s)
Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Química Encefálica/genética , Quinasa del Factor 2 de Elongación/deficiencia , Quinasa del Factor 2 de Elongación/genética , Percepción del Gusto/genética , Animales , Química Encefálica/fisiología , Condicionamiento Psicológico/fisiología , Quinasa del Factor 2 de Elongación/metabolismo , Imagen por Resonancia Magnética/métodos , Manganeso , Memoria/fisiología , Ratones , Fosforilación/genética , Percepción del Gusto/fisiología
2.
Mol Cancer ; 10: 72, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21668989

RESUMEN

BACKGROUND: Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6) are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. RESULTS: A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP). An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. CONCLUSION: These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with a companion diagnostic biomarker and a putative functional site for kinase-unrelated activities of Cdk4.


Asunto(s)
Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/química , Neoplasias/fisiopatología , Péptidos/farmacología , Secuencia de Aminoácidos , Antineoplásicos/química , Autofagia/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Modelos Moleculares , Neoplasias/enzimología , Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteómica , Homología de Secuencia de Aminoácido , Telomerasa/genética , Telomerasa/metabolismo
3.
Mol Cell Biol ; 34(22): 4088-103, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25182533

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Quinasa del Factor 2 de Elongación/genética , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Neoplasias/genética , Fosforilación , Mutación Puntual , Ratas , Quinasas raf/metabolismo , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA