Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34526399

RESUMEN

Variations and fluctuations are characteristic features of biological systems and are also manifested in cell cultures. Here, we describe a computational pipeline for identifying the range of three-dimensional (3D) cell-aggregate sizes in which nonisometric scaling emerges in the presence of joint mass and metabolic rate fluctuations. The 3D cell-laden spheroids with size and single-cell metabolic rates described by probability density functions were randomly generated in silico. The distributions of the resulting metabolic rates of the spheroids were computed by modeling oxygen diffusion and reaction. Then, a method for estimating scaling exponents of correlated variables through statistically significant data collapse of joint probability distributions was developed. The method was used to identify a physiologically relevant range of spheroid sizes, where both nonisometric scaling and a minimum oxygen concentration (0.04 mol⋅m-3) is maintained. The in silico pipeline described enables the prediction of the number of experiments needed for an acceptable collapse and, thus, a consistent estimate of scaling parameters. Using the pipeline, we also show that scaling exponents may be significantly different in the presence of joint mass and metabolic-rate variations typically found in cells. Our study highlights the importance of incorporating fluctuations and variability in size and metabolic rates when estimating scaling exponents. It also suggests the need for taking into account their covariations for better understanding and interpreting experimental observations both in vitro and in vivo and brings insights for the design of more predictive and physiologically relevant in vitro models.


Asunto(s)
Biología Computacional/métodos , Metabolismo/fisiología , Esferoides Celulares/metabolismo , Técnicas de Cultivo de Célula/métodos , Modelos Biológicos , Modelos Teóricos , Análisis de Escalamiento Multidimensional , Oxígeno/metabolismo , Probabilidad
2.
Dig Dis Sci ; 68(10): 3857-3871, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650948

RESUMEN

Visceral myopathy is a rare, life-threatening disease linked to identified genetic mutations in 60% of cases. Mostly due to the dearth of knowledge regarding its pathogenesis, effective treatments are lacking. The disease is most commonly diagnosed in children with recurrent or persistent disabling episodes of functional intestinal obstruction, which can be life threatening, often requiring long-term parenteral or specialized enteral nutritional support. Although these interventions are undisputedly life-saving as they allow affected individuals to avoid malnutrition and related complications, they also seriously compromise their quality of life and can carry the risk of sepsis and thrombosis. Animal models for visceral myopathy, which could be crucial for advancing the scientific knowledge of this condition, are scarce. Clearly, a collaborative network is needed to develop research plans to clarify genotype-phenotype correlations and unravel molecular mechanisms to provide targeted therapeutic strategies. This paper represents a summary report of the first 'European Forum on Visceral Myopathy'. This forum was attended by an international interdisciplinary working group that met to better understand visceral myopathy and foster interaction among scientists actively involved in the field and clinicians who specialize in care of people with visceral myopathy.


Asunto(s)
Seudoobstrucción Intestinal , Desnutrición , Animales , Niño , Humanos , Calidad de Vida , Modelos Animales , Mutación , Enfermedades Raras
3.
Proc Natl Acad Sci U S A ; 116(35): 17323-17329, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31409712

RESUMEN

Kleiber's law describes the scaling of metabolic rate with body size across several orders of magnitude in size and across taxa and is widely regarded as a fundamental law in biology. The physiological origins of Kleiber's law are still debated and generalizations of the law accounting for deviations from the scaling behavior have been proposed. Most theoretical and experimental studies of Kleiber's law, however, have focused on the relationship between the average body size of a species and its mean metabolic rate, neglecting intraspecific variation of these 2 traits. Here, we propose a theoretical characterization of such variation and report on proof-of-concept experiments with freshwater phytoplankton supporting such framework. We performed joint measurements at the single-cell level of cell volume and nitrogen/carbon uptake rates, as proxies of metabolic rates, of 3 phytoplankton species using nanoscale secondary ion mass spectrometry (NanoSIMS) and stable isotope labeling. Common scaling features of the distribution of nutrient uptake rates and cell volume are found to hold across 3 orders of magnitude in cell size. Once individual measurements of cell volume and nutrient uptake rate within a species are appropriately rescaled by a function of the average cell volume within each species, we find that intraspecific distributions of cell volume and metabolic rates collapse onto a universal curve. Based on the experimental results, this work provides the building blocks for a generalized form of Kleiber's law incorporating intraspecific, correlated variations of nutrient-uptake rates and body sizes.


Asunto(s)
Agua Dulce , Modelos Biológicos , Fitoplancton/fisiología
4.
Altern Lab Anim ; 50(6): 423-436, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36222242

RESUMEN

Substances of abuse have the potential to cause addiction, habituation or altered consciousness. Most of the research on these substances focuses on addiction, and is carried out through observational and clinical studies on humans, or experimental studies on animals. The transposition of the EU Directive 2010/63 into Italian law in 2014 (IT Law 2014/26) includes a ban on the use of animals for research on substances of abuse. Since then, in Italy, public debate has continued on the topic, while the application of the Article prohibiting animal research in this area has been postponed every couple of years. In the light of this debate, we briefly review a range of methodologies - including animal and non-animal, as well as patient or population-based studies - that have been employed to address the biochemical, neurobiological, toxicological, clinical and behavioural effects of substances of abuse and their dependency. We then discuss the implications of the Italian ban on the use of animals for such research, proposing concrete and evidence-based solutions to allow scientists to pursue high-quality basic and translational studies within the boundaries of the regulatory and legislative framework.


Asunto(s)
Experimentación Animal , Investigación Biomédica , Animales , Humanos , Italia
5.
Altern Lab Anim ; 50(2): 156-171, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35410493

RESUMEN

The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models. Oncoseek Bio-Acasta Health, which is an innovative biotechnology start-up company based in Hyderabad and Vishakhapatnam, India, organises an annual International Conference on 3Rs Research and Progress. In 2021, this conference was on 'Advances in Research Animal Models and Cutting-Edge Research in Alternatives'. This annual conference is a platform that brings together eminent scientists and researchers from various parts of the world, to share recent advances from their research in the field of alternatives to animals including new approach methodologies, and to promote practices to help refine animal experiments where alternatives are not available. This report presents the proceedings of the conference, which was held in hybrid mode (i.e. virtual and in-person) in November 2021.


Asunto(s)
Experimentación Animal , Alternativas a las Pruebas en Animales , Alternativas a las Pruebas en Animales/métodos , Bienestar del Animal , Animales , Humanos , India , Modelos Animales
6.
Altern Lab Anim ; 50(2): 90-120, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35578444

RESUMEN

Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general.


Asunto(s)
Experimentación Animal , Alternativas a las Pruebas en Animales , Animales , Europa (Continente)
7.
Altern Lab Anim ; 50(6): 381-413, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36458800

RESUMEN

The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general.


Asunto(s)
Alternativas al Uso de Animales , Bienestar del Animal , Animales de Laboratorio , Animales , Europa (Continente)
8.
Biotechnol Bioeng ; 118(2): 690-702, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33058147

RESUMEN

We describe the engineering design, computational modeling, and empirical performance of a moving air-liquid interface (MALI) bioreactor for the study of aerosol deposition on cells cultured on an elastic, porous membrane which mimics both air-liquid interface exposure conditions and mechanoelastic motion of lung tissue during breathing. The device consists of two chambers separated by a cell layer cultured on a porous, flexible membrane. The lower (basolateral) chamber is perfused with cell culture medium simulating blood circulation. The upper (apical) chamber representing the air compartment of the lung is interfaced to an aerosol generator and a pressure actuation system. By cycling the pressure in the apical chamber between 0 and 7 kPa, the membrane can mimic the periodic mechanical strain of the alveolar wall. Focusing on the engineering aspects of the system, we show that membrane strain can be monitored by measuring changes in pressure resulting from the movement of media in the basolateral chamber. Moreover, liquid aerosol deposition at a high dose delivery rate (>1 µl cm-2 min-1 ) is highly efficient (ca. 51.5%) and can be accurately modeled using finite element methods. Finally, we show that lung epithelial cells can be mechanically stimulated under air-liquid interface and stretch-conditions without loss of viability. The MALI bioreactor could be used to study the effects of aerosol on alveolar cells cultured at the air-liquid interface in a biodynamic environment or for toxicological or therapeutic applications.


Asunto(s)
Reactores Biológicos , Células Epiteliales/metabolismo , Modelos Biológicos , Alveolos Pulmonares/metabolismo , Mecánica Respiratoria , Aerosoles , Humanos
9.
Nanotechnology ; 28(8): 085705, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28102176

RESUMEN

Molecularly imprinted polymer nanoparticles incorporating magnetic nanoparticles (MNPs) have been investigated for their selective adsorption properties. Here we describe the synthesis and characterization of magnetic cytosine-imprinted chitosan nanoparticles (CIPs) for gene delivery. In particular, CIPs carrying the mammalian expression plasmid of enhanced green fluorescent protein were prepared by the co-precipitation of MNPs, chitosan and a template nucleobase (cytosine). The results show that the selective reabsorption of cytosine to magnetic CIPs was at least double that of non-imprinted polymers and other nucleobases (such as adenine and thymine). The gene carrier CIPs were used for the transfection of human embryonic kidney 293 cells showing dramatic increase their efficiency with that of conventional chitosan nanoparticles. Furthermore, the gene carrier magnetic CIPs also exhibit low toxicity compared to that of commercially available cationic lipids.

10.
Artif Organs ; 41(12): E347-E355, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28543403

RESUMEN

Decellularized human livers are considered the perfect extracellular matrix (ECM) surrogate because both three-dimensional architecture and biological features of the hepatic microenvironment are thought to be preserved. However, donor human livers are in chronically short supply, both for transplantation or as decellularized scaffolds, and will become even scarcer as life expectancy increases. It is hence of interest to determine the structural and biochemical properties of human hepatic ECM to derive design criteria for engineering biomimetic scaffolds. The intention of this work was to obtain quantitative design specifications for fabricating scaffolds for hepatic tissue engineering using human livers as a template. To this end, hepatic samples from five patients scheduled for hepatic resection were decellularized using a protocol shown to reproducibly conserve matrix composition and microstructure in porcine livers. The decellularization outcome was evaluated through histological and quantitative image analyses to evaluate cell removal, protein, and glycosaminoglycan content per unit area. Applying the same decellularization protocol to human liver samples obtained from five different patients yielded five different outcomes. Only one liver out of five was completely decellularized, while the other four showed different levels of remaining cells and matrix. Moreover, protein and glycosaminoglycan content per unit area after decellularization were also found to be patient- (or donor-) dependent. This donor-to-donor variability of human livers thus precludes their use as templates for engineering a generic "one-size fits all" ECM-mimic hepatic scaffold.


Asunto(s)
Matriz Extracelular/química , Hígado/química , Hígado/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Biomimética , Glicosaminoglicanos/análisis , Humanos , Hígado/ultraestructura , Proteínas/análisis , Porcinos
11.
Arch Toxicol ; 90(7): 1769-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27121469

RESUMEN

The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air-liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air-liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanoestructuras/toxicidad , Fibrosis Pulmonar/inducido químicamente , Pruebas de Toxicidad/métodos , Aerosoles , Alternativas al Uso de Animales , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Diseño de Equipo , Humanos , Pulmón/citología , Modelos Biológicos , Nanoestructuras/administración & dosificación , Pruebas de Toxicidad/instrumentación
12.
Nat Commun ; 15(1): 4102, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778027

RESUMEN

The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional , Neuronas , Neuronas/citología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/citología , Imagenología Tridimensional/métodos , Ratones , Procesamiento de Imagen Asistido por Computador/métodos
13.
J Nanosci Nanotechnol ; 13(1): 188-97, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23646716

RESUMEN

This paper presents the realisation of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(epsilon-caprolactone) (PCL), and poly(lactide-co-glycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold.


Asunto(s)
Materiales Biocompatibles/síntesis química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Fuerza Compresiva , Módulo de Elasticidad , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Ensayo de Materiales , Resistencia a la Tracción
14.
Cells ; 12(8)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190089

RESUMEN

Human-relevant three-dimensional (3D) models of cerebral tissue can be invaluable tools to boost our understanding of the cellular mechanisms underlying brain pathophysiology. Nowadays, the accessibility, isolation and harvesting of human neural cells represents a bottleneck for obtaining reproducible and accurate models and gaining insights in the fields of oncology, neurodegenerative diseases and toxicology. In this scenario, given their low cost, ease of culture and reproducibility, neural cell lines constitute a key tool for developing usable and reliable models of the human brain. Here, we review the most recent advances in 3D constructs laden with neural cell lines, highlighting their advantages and limitations and their possible future applications.


Asunto(s)
Encéfalo , Enfermedades Neurodegenerativas , Humanos , Reproducibilidad de los Resultados , Línea Celular
15.
Int J Bioprint ; 9(5): 771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457929

RESUMEN

Biological tissues possess a high degree of structural complexity characterized by curvature and stratification of different tissue layers. Despite recent advances in in vitro technology, current engineering solutions do not comprise both of these features. In this paper, we present an integrated in silico-in vitro strategy for the design and fabrication of biological barriers with controlled curvature and architecture. Analytical and computational tools combined with advanced bioprinting methods are employed to optimize living inks for bioprinting-structured core-shell constructs based on alginate. A finite element model is used to compute the hindered diffusion and crosslinking phenomena involved in the formation of core-shell structures and to predict the width of the shell as a function of material parameters. Constructs with a solid alginate-based shell and a solid, liquid, or air core can be reproducibly printed using the workflow. As a proof of concept, epithelial cells and fibroblasts were bioprinted respectively in a liquid core (10 mg/mL Pluronic) and in a solid shell (20 mg/mL alginate plus 20 mg/mL gelatin, used for providing the cells with adhesive moieties). These constructs had a roundness of 97.6% and an average diameter of 1500 ±136 µm. Moreover, their viability was close to monolayer controls (74.12% ± 22.07%) after a week in culture, and the paracellular transport was twice that of cell-free constructs, indicating cell polarization.

16.
APL Bioeng ; 7(3): 036111, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664826

RESUMEN

Accurately modeling oxygen transport and consumption is crucial to predict metabolic dynamics in cell cultures and optimize the design of tissue and organ models. We present a methodology to characterize the Michaelis-Menten oxygen consumption parameters in vitro, integrating novel experimental techniques and computational tools. The parameters were derived for hepatic cell cultures with different dimensionality (i.e., 2D and 3D) and with different surface and volumetric densities. To quantify cell packing regardless of the dimensionality of cultures, we devised an image-based metric, referred to as the proximity index. The Michaelis-Menten parameters were related to the proximity index through an uptake coefficient, analogous to a diffusion constant, enabling the quantitative analysis of oxygen dynamics across dimensions. Our results show that Michaelis-Menten parameters are not constant for a given cell type but change with dimensionality and cell density. The maximum consumption rate per cell decreases significantly with cell surface and volumetric density, while the Michaelis-Menten constant tends to increase. In addition, the dependency of the uptake coefficient on the proximity index suggests that the oxygen consumption rate of hepatic cells is superadaptive, as they modulate their oxygen utilization according to its local availability and to the proximity of other cells. We describe, for the first time, how cells consume oxygen as a function of cell proximity, through a quantitative index, which combines cell density and dimensionality. This study enhances our understanding of how cell-cell interaction affects oxygen dynamics and enables better prediction of aerobic metabolism in tissue models, improving their translational value.

17.
Adv Exp Med Biol ; 745: 138-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22437817

RESUMEN

Cell culture is the workhorse of biologists, toxicologists, tissue engineers and a whole host of research fields in both academia and industry. Having explored individual molecular mechanisms inside cells for decades using traditional cell culture techniques, researchers have only just begun to appreciate that the intricate interconnectivity between cells and cellular networks as well as with the external environment is far more important to cellular orchestration than are single molecular events inside the cell. For example many questions regarding cell, tissue, organ and system response to drugs, environmental toxins, stress and nutrients cannot possibly be answered by concentrating on the minutiae of what goes on in the deepest recesses of single cells. New models are required to investigate cellular cross-talk between different cell types and to construct complex in-vitro models to properly study tissue, organ and system interaction without resorting to animal experiments. This chapter describes how tissue and organ models can be developed using the Quasi-Vivo system and discusses how they may be used in drug toxicity studies.


Asunto(s)
Pruebas de Toxicidad/métodos , Animales , Reactores Biológicos , Biotransformación , Técnicas de Cultivo de Célula , Humanos , Microfluídica , Resistencia al Corte
18.
Tissue Eng Part B Rev ; 28(4): 912-925, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34555953

RESUMEN

The mechanical behavior of soft tissue extracellular matrix is time dependent. Moreover, it evolves over time due to physiological processes as well as aging and disease. Measuring and quantifying the time-dependent mechanical behavior of soft tissues and materials pose a challenge, not only because of their labile and hydrated nature but also because of the lack of a common definition of terms and understanding of models for characterizing viscoelasticity. Here, we review the most important measurement techniques and models used to determine the viscoelastic properties of soft hydrated materials-or hydrogels-underlining the difference between viscoelastic behavior and the properties and descriptors used to quantify viscoelasticity. We then discuss the principal factors, which determine tissue viscoelasticity in vivo and summarize what we currently know about cell response to time-dependent materials, outlining fundamental factors that have to be considered when interpreting results. Particular attention is given to the relationship between the different time scales involved (mechanical, cellular and observation time scales), as well as scaling principles, all of which must be considered when designing viscoelastic materials and performing experiments for biomechanics or mechanobiology applications. From this overview, key considerations and directions for furthering insights and applications in the emergent field of cell viscoelastic mechanotransduction are provided. Impact statement Our tissues are viscoelastic: they respond to mechanical stresses and strains in a time-dependent manner. Their mechanical behavior also evolves over time due to growth, aging, remodeling and disease. Understanding cell response to time-dependent and time-evolving mechanical cues is important for a better comprehension of a wide number of pathophysiological processes and for the design of biomimetic substrates, which can be used as physiologically relevant in vitro models and in regenerative medicine applications. This review highlights the importance of a more rigorous approach toward viscoelastic material design and testing for cell mechanobiology studies, which embrace the entire spectrum of elasto- and viscotransduction.


Asunto(s)
Materiales Biocompatibles , Materiales Biomiméticos , Materiales Biocompatibles/química , Elasticidad , Humanos , Hidrogeles/química , Mecanotransducción Celular , Viscosidad
19.
Health Technol (Berl) ; 12(3): 643-653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502168

RESUMEN

Supporting the expansion of best practices in Biomedical Engineering (BME) can facilitate pathway toward the providing universal health coverage and more equitable and accessible healthcare technologies, especially in low- and middle-income (LMI) settings. These best practices can act as drivers of change and may involve scientific-technological issues, human intervention during technology development, educational aspects, social performance management for improved interactions along the medical technology life cycle, methods for managing resources and approaches for the establishment of regulatory frameworks. The aim of our study was to identify weaknesses and strengths of the scientific, technological, socio-political, regulatory and educational landscape in BME in LMI resource settings. We thus analysed the current state-of-the-art through six dimensions considered fundamental for advancing quality and equity in healthcare: 1) relevant and 2) emergent technologies, 3) new paradigms in medical technology development, 4) innovative BME education, 5) regulation and standardization for novel approaches, and 6) policy making. In order to evaluate and compare their relevance, maturity and implementation challenges, they were assessed through a questionnaire to which 100 professionals from 35 countries with recognized experience in the field of BME and its application to LMI settings responded. The results are presented and discussed, highlighting the main challenges and pinpointing relevant areas where intervention, including local lobbying and international promotion of best practices is necessary. We were also able to identify areas where minimal effort is required to make big changes in global health. Supplementary information: The online version contains supplementary material available at 10.1007/s12553-022-00657-8.

20.
Biotechnol Bioeng ; 108(9): 2129-40, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21495015

RESUMEN

To develop in vitro models of cells, tissues and organs we have designed and realized a series of cell culture chambers. Each chamber is purpose designed to simulate a particular feature of the in vivo environment. The bioreactor system is user friendly, and the chambers are easy to produce, sterilize and assemble. In addition they can be connected together to simulate inter-organ or tissue cross-talk. Here we discuss the design philosophy of the bioreactor system and then describe its construction. Preliminary results of validation tests obtained with hepatocytes and endothelial cells are also reported. The results show that endothelial cells are extremely sensitive to small levels of shear stress and that the presence of heterotypic signals from endothelial cells enhances the endogenous metabolic function of hepatocytes.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Hepatocitos/citología , Animales , Recuento de Células , Células Cultivadas , Células Endoteliales/metabolismo , Diseño de Equipo , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Reproducibilidad de los Resultados , Resistencia al Corte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA