Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 326(4): E482-E492, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324257

RESUMEN

Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Animales , Pez Cebra , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Vitaminas , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Antibacterianos
2.
J Nutr ; 154(5): 1505-1516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460786

RESUMEN

BACKGROUND: Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES: This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS: Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS: Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS: This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.


Asunto(s)
Dieta Alta en Grasa , Gluconeogénesis , Intolerancia a la Glucosa , Hígado , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Gluconeogénesis/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Humanos , Intolerancia a la Glucosa/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Células HEK293 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Transducción de Señal
3.
Br J Nutr ; 131(4): 553-566, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-37699661

RESUMEN

Sterol regulatory element-binding protein 2 (SREBP2) is considered to be a major regulator to control cholesterol homoeostasis in mammals. However, the role of SREBP2 in teleost remains poorly understand. Here, we explored the molecular characterisation of SREBP2 and identified SREBP2 as a key modulator for 3-hydroxy-3-methylglutaryl-coenzyme A reductase and 7-dehydrocholesterol reductase, which were rate-limiting enzymes of cholesterol biosynthesis. Moreover, dietary palm oil in vivo or palmitic acid (PA) treatment in vitro elevated cholesterol content through triggering SREBP2-mediated cholesterol biosynthesis in large yellow croaker. Furthermore, our results also found that PA-induced activation of SREBP2 was dependent on the stimulating of endoplasmic reticulum stress (ERS) in croaker myocytes and inhibition of ERS by 4-Phenylbutyric acid alleviated PA-induced SREBP2 activation and cholesterol biosynthesis. In summary, our findings reveal a novel insight for understanding the role of SREBP2 in the regulation of cholesterol metabolism in fish and may deepen the link between dietary fatty acid and cholesterol biosynthesis.


Asunto(s)
Grasas Insaturadas en la Dieta , Perciformes , Animales , Colesterol/metabolismo , Estrés del Retículo Endoplásmico , Músculos/metabolismo , Aceite de Palma/farmacología , Perciformes/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
4.
Fish Shellfish Immunol ; 148: 109463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402918

RESUMEN

An 8-week growth trial was performed to investigate the protective effects of methanotroph bacteria meal (MBM) produced from methane against soybean meal-induced enteritis (SBMIE) in juvenile turbot (Scophthalmus maximus L.). Five isonitrogenous and isolipidic diets were formulated: fishmeal-based diet (FM, the control group); FM with approximate 50% of fishmeal substituted by 399.4 g/kg soybean meal (SBM); SBM supplemented with 63.6, 127.2 and 190.8 g/kg MBM (named MBM1, MBM2 and MBM3), each diet was randomly assigned to triplicate fibreglass tanks. Results showed that fish fed with SBM exhibited enteritis, identified by reduced relative weight of intestine (RWI), as well as expanded lamina propria width and up-regulated gene expression of pro-inflammatory cytokines (tnf-α, il-6 and il-8) in intestine. While the above symptoms were reversed when diet SBM supplemented with MBM at the levels of 63.6 and 127.2 g/kg, as well as characterized by up-regulated gene expression of anti-inflammatory cytokines (tgf-ß and il-10) and tight junction protein (claudin3, claudin4 and claudin7) in intestine. Intestinal transcriptome analysis showed that the differentially expressed genes between groups FM and SBM predominantly enriched in the JAK-STAT signaling pathway, and the enrichment of differentially expressed genes between groups SBM and SBM supplemented with 63.6 g/kg MBM was in the inflammatory bowel disease (IBD) and JAK-STAT signaling pathway. To be specific, the expression of jak1, jak2b, stat1 and stat5a was significantly up-regulated when fish fed with SBM, suggested the activation of JAK-STAT signaling pathway, while the expression of these above genes was depressed by providing MBM to diet SBM, and the gene expression of toll-like receptors tlr2 and tlr5b showed a similar pattern. Moreover, intestinal flora analysis showed that community richness and abundance of beneficial bacteria (Cetobacterium and acillus_coagulans) were improved when fish fed with SBM supplemented with 63.6 g/kg MBM. Overall, methanotroph bacteria meal may alleviate SBMIE by regulating the expression of tight junction protein, toll-like receptors and JAK-STAT signaling pathway, as well as improving intestinal flora profile, which would be beneficial for enhancing the immune tolerance and utilization efficiency of turbot to dietary soybean meal.


Asunto(s)
Enteritis , Peces Planos , Microbioma Gastrointestinal , Animales , Harina/análisis , Enteritis/inducido químicamente , Dieta/veterinaria , Receptores Toll-Like/metabolismo , Citocinas/metabolismo , Bacterias , Proteínas de Uniones Estrechas/metabolismo , Alimentación Animal/análisis
5.
Fish Shellfish Immunol ; 151: 109651, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796043

RESUMEN

A ten-week culture trial in juvenile large yellow croaker (Larimichthys crocea) (10.80 ± 0.10 g) was conducted to assess the impact of supplementing heat-killed Lactobacillus acidophilus (HLA) on growth performance, intestinal digestive enzyme activity, antioxidant capacity and inflammatory response. Five iso-nitrogenous (42 % crude protein) and iso-lipidic (12 % crude lipid) experimental feeds with different levels of HLA (0.0 %, 0.1 %, 0.2 %, 0.4 %, or 0.8 %) were prepared. They were named FO (control group), HLA0.1, HLA0.2, HLA0.4 and HLA0.8, respectively. The results indicated that HLA addition had no impact on survival (P > 0.05). In this experiment, the final body weight, weight gain rate and specific growth rate showed a quadratic regression trend, initially increasing and subsequently decreasing with the increasing in HLA levels, and attained the peak value at 0.2 % HLA supplemental level (P < 0.05). In contrast to the control group, in terms of digestive ability, amylase, lipase and trypsin exhibited a notable linear and quadratic pattern, demonstrating a substantial increase when 0.1% 0.2 % HLA was added in the diets (P < 0.05). Notably, elevated levels of catalase (CAT) activity, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC) were observed in the liver when adding 0.1%-0.2 % HLA, and the level of malondialdehyde (MDA) was significantly decreased and the liver exhibited a notable upregulation in the mRNA expression levels of nrf2, cat, sod2, and sod3 (P < 0.05). Additionally, the mRNA levels of genes associated with tight junctions in the intestines (zo-1, zo-2 and occludin) exhibited a significant upregulation when 0.2 % HLA was added in the feed (P < 0.05). Furthermore, the levels of mRNA expression for proinflammatory genes in the intestines including tnf-α, il-1ß, il-6 and il-8 exhibited a quadratic regression trend, characterized by an initial decline followed by subsequent growth (P < 0.05). Meanwhile, the levels of mRNA expression for genes linked to anti-inflammatory responses in the intestines (including il-10, tgf-ß, and arg1) exhibited a quadratic regression pattern, initially increasing and subsequently decreasing (P < 0.05). Compare with the control group, the levels of tnf-α, il-1ß and il-8 expression were notably downregulated in all HLA addition groups (P < 0.05). When 0.2 % HLA was added, the expression levels of il-10, tgf-ß and arg1 in the intestinal tract were markedly increased (P < 0.05). Overall, the supplementation of 0.2 % HLA in the feed has been shown to enhance the growth performance. The enhancement was attributed to HLA's capacity to improve antioxidant function, intestinal barrier integrity, and mitigate inflammatory responses. This research offers a scientific foundation for the utilization of HLA in aquaculture.

6.
FASEB J ; 36(5): e22330, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35474468

RESUMEN

1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], the most active vitamin D (VD) metabolite, is a steroid hormone playing an important role in many physiological functions in addition to maintaining mineral homeostasis. In this study, we explored the mechanism that the VD regulated insulin pathway and glucose metabolism in zebrafish in vitro and in vivo. Our results show that 1,25(OH)2 D3  significantly enhances the expression of insulin receptor a (insra), insulin receptor substrate 1 (irs1) and glucose transporter 2 (glut2), and promotes glycolysis and glycogenesis, while suppressing gluconeogenesis in zebrafish liver cell line (ZFL) under the condition of high glucose (20 mM), instead of the normal glucose (10 mM). Moreover, consistent results were obtained from the zebrafish fed with VD3 -deficient diet, as well as the cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, results from dual-luciferase reporting system exhibited that 1,25(OH)2 D3 directly activated the transcription of insra, rather than insrb in zebrafish by binding to vitamin D response element (VDRE) located at -181 to -167 bp in the promoter region of insra. Importantly, the 1,25(OH)2 D3 treatment significantly alleviated the symptoms of hyperglycemia in diabetic zebrafish. In conclusion, our study demonstrated that VD activates VDRE located in the promoter area of insra in zebrafish to promote insulin/insra signaling pathway, thereby contributing to the maintenance of glucose homeostasis.


Asunto(s)
Vitamina D , Pez Cebra , Animales , Glucosa/metabolismo , Insulina/metabolismo , Vitamina D/metabolismo , Vitaminas , Pez Cebra/metabolismo
7.
FASEB J ; 36(7): e22418, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35713568

RESUMEN

Hypoxia and inflammatory mediators stabilize hypoxia-inducible factor (HIF)-1α through posttranslational modifications, such as phosphorylation and succinylation. Here, we identified sirtuin 1 (SIRT1) and 60 kDa Tat-interactive protein (Tip60)-mediated acetylation as another critical posttranslational modification that regulates HIF-1α protein stability under lipopolysaccharide (LPS) stimulation. Mechanistically, DNA damage induced by excessive reactive oxygen species (ROS) activated poly (ADP-ribose) polymerase 1 (PARP1) to consume oxidized nicotinamide adenine dinucleotide (NAD+ ). Correspondingly, SIRT1 activity was decreased with the decline in NAD+ levels, resulting in increased HIF-1α acetylation. LPS also activated the ATP-citrate lyase (ACLY)-Tip60 pathway to further enhance HIF-1α acetylation. Acetylation contributed to HIF-1α stability and exacerbated LPS-induced inflammation. Thus, inhibiting HIF-1α stability by decreasing its acetylation could partly alleviate LPS-induced inflammation. In conclusion, we revealed the mechanism by which LPS stabilized HIF-1α by increasing its acetylation via the PARP1-SIRT1 and ACLY-Tip60 pathways in fish macrophages. This study may provide novel insights for manipulation of HIF-1α acetylation as a therapeutic strategy against inflammation from the perspective of acetylation in vertebrates.


Asunto(s)
Lipopolisacáridos , Sirtuinas , ATP Citrato (pro-S)-Liasa/genética , Acetilación , Animales , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/metabolismo
8.
Br J Nutr ; 129(10): 1657-1666, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556193

RESUMEN

Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, ß and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.


Asunto(s)
Ácidos Palmíticos , Perciformes , Animales , Ácidos Palmíticos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Secuencia de Aminoácidos , Ácidos Grasos/metabolismo , Hígado/metabolismo , Perciformes/genética , Perciformes/metabolismo , ARN Mensajero/metabolismo , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
9.
Br J Nutr ; 129(1): 29-40, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35473947

RESUMEN

Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) ß-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial ß-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal ß-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating ß-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA ß-oxidation capability and suppressing the ER stress pathway in fish.


Asunto(s)
Metabolismo de los Lípidos , Perciformes , Animales , Dieta Alta en Grasa/efectos adversos , Antioxidantes/metabolismo , Carnitina/metabolismo , Hígado/metabolismo , Ácidos Grasos/metabolismo , Perciformes/genética , Estrés del Retículo Endoplásmico , Lípidos
10.
Fish Shellfish Immunol ; 132: 108491, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36503059

RESUMEN

It has been known that vitamin D3 (VD3) not only plays an important role in regulating calcium and phosphorus metabolism in animals, but also has extensive effects on immune functions. In this study, the mechanism how VD3 influences bactericidal ability in turbot was explored. The transcriptomic analysis identified that dietary VD3 significantly upregulated the gene expression of C-type lectin receptors (CLRs), including mannose receptors (mrc1, mrc2, pla2r1) and collectins (collectin 11 and collectin 12) in turbot intestine. Further results obtained from in vitro experiments confirmed that the gene expression of mannose receptors and collectins in head-kidney macrophages (HKMs) of turbot was induced after the cells were incubated with different concentrations of VD3 (0, 1, 10 nM) or 1,25(OH)2D3 (0, 10, 100 pM). Meanwhile, both phagocytosis and bactericidal functions of HKMs were significantly improved in VD3 or 1,25(OH)2D3-incubated HKMs. Furthermore, phagocytosis and bacterial killing of HKMs decreased after collectin 11 was knocked down. Moreover, VD3-enhanced antibacterial activities diminished in collectin 11-interfered cells. Interestingly, the evidence was provided in the present study that inactive VD3 could be metabolized into active 1,25(OH)2D3 via hydroxylases encoded by cyp27a1 and cyp27b1 in fish macrophages. In conclusion, VD3 could be metabolized to 1,25(OH)2D3 in HKMs, which promoted the expression of CLRs in macrophages, leading to enhanced bacterial clearance.


Asunto(s)
Colecalciferol , Peces Planos , Animales , Colecalciferol/farmacología , Colecalciferol/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manosa , Peces Planos/genética , Peces Planos/metabolismo , Macrófagos , Colectinas , Riñón/metabolismo
11.
Fish Shellfish Immunol ; 133: 108545, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36642352

RESUMEN

IL-22 has been characterized as a critical cytokine in maintaining barrier integrity and host immunity. So far, it has been known that IL-22 is mainly produced by lymphoid lineage cells. In the present study, we have thoroughly investigated butyrate-induced production and function of IL-22 in fish macrophages. Our results demonstrated that short-chain fatty acids (SCFAs), major microbiota-derived metabolites, promoted the expression of IL-22 in head kidney macrophages (HKMs) of turbot (Scophthalmus maximus L.). Interestingly, butyrate-mediated intracellular bacterial killing in HKMs diminished when IL-22 expression was interfered. Furthermore, the turbot fed the diet containing sodium butyrate (NaB) exhibited significantly lower mortality after bacterial infection, compared to the fish fed a basal diet. At the meantime, a higher level of IL-22 expression and bactericidal activity was detected in HKMs from the turbot fed NaB-supplemented diet. In addition, NaB treatment promoted the expression of antimicrobial peptides (AMPs) ß-defensins in zebrafish (Danio rerio). However, butyrate-induced expression of AMPs was reduced in IL-22 mutant zebrafish compared to wild-type (WT) fish. Meanwhile, NaB treatment was incapable to protect IL-22 mutant fish from bacterial infection as it did in WT zebrafish. Importantly, our results demonstrated that IL-22 expression was remarkably suppressed in macrophage-depleted zebrafish, indicating that macrophage might be a cell source of IL-22 production in vivo. In conclusion, all these findings collectively revealed that SCFAs regulated the production and function of IL-22 in fish macrophages, which facilitated host resistance to bacterial invasion.


Asunto(s)
Interleucinas , Pez Cebra , Animales , Interleucinas/genética , Interleucinas/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Macrófagos , Ácidos Grasos Volátiles/metabolismo , Bacterias , Interleucina-22
12.
Fish Shellfish Immunol ; 134: 108609, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764631

RESUMEN

Transcription factor EB (TFEB) plays an integral role in the production of proinflammatory cytokines and chemokines in response to pathogen stimulation in mammals. However, the role of TFEB in antiviral immune responses and the potential regulatory mechanisms in fish remain poorly understood. Here, we cloned and characterized Larimichthys crocea TFEB (LcTFEB) with 524 amino acids and a typical basic helix-loop-helix-leucine zipper domain. LcTFEB could translocate into the nucleus upon starvation and had a comparatively high expression in immune tissues. Similar to the expression of antiviral immune genes, the transcriptional expression and activity of LcTFEB showed a trend of increasing and then decreasing with the prolongation of stimulation. Inhibition of LcTFEB using siRNA dramatically increased the polyinosinic-polycytidylic acid (poly (I:C))-induced interferon response and pro-inflammatory cytokines mRNA expression levels, whereas pharmacological activation and overexpression of LcTFEB exhibited the reverse effects. Mechanically, LcTFEB might promote the expression of IFNh as negative feedback to limit the virus-induced inflammatory responses. Notably, although inhibition of mTORC1 exacerbated poly (I:C)-triggered inflammatory responses, the effects of LcTFEB were independent of mTORC1. Overall, this study revealed an unidentified critical role of LcTFEB in the regulation of antiviral immune responses and promoted the understanding of TFEB in the antiviral immunity of fish macrophages.


Asunto(s)
Antivirales , Perciformes , Animales , Antivirales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Peces/genética , Macrófagos , Citocinas/metabolismo , Poli I-C/farmacología , Factores de Transcripción/metabolismo , Inmunidad , Mamíferos/metabolismo
13.
Fish Shellfish Immunol ; 141: 109031, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640122

RESUMEN

Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.05 ± 0.09 g) fed with high level soybean oil (SO) diets. Two basic diets with fish oil (FO) or SO were formulated. Based on the SO group diet, three different levels of GML 0.02% (SO0.02), 0.04% (SO0.04) and 0.08% (SO0.08) were supplemented respectively. Results showed that intestinal villus height and perimeter ratio were increased in SO0.04 treatment compared with the SO group. The mRNA expressions of intestinal physical barrier-related gene odc and claudin-11 were significantly up-regulated in different addition of GML treatments compared with the SO group. Fish fed SO diet with 0.04% GML addition showed higher activities of acid phosphatase and lysozyme compared with the SO group. The content of malonaldehyde was significantly decreased and activities of catalase and superoxide dismutase were significantly increased in 0.02% and 0.04% GML groups compared with those in the SO group. The mRNA transcriptional levels of inflammatory response-related genes (il-1ß, il-6, tnf-α and cox-2) in 0.04% GML treatment were notably lower than those in the SO group. Meanwhile, sequencing analysis of bacterial 16S rRNA V4-V5 region showed that GML addition changed gut microbiota structure and increased alpha diversity of large yellow croaker fed diets with a high level of SO. The correlation analysis results indicated that the change of intestinal microbiota relative abundance strongly correlated with intestinal health indexes. In conclusion, these results demonstrated that 0.02%-0.04% GML addition could improve intestinal morphology, physical barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis of large yellow croaker fed diets with a high percentage of SO.


Asunto(s)
Microbiota , Perciformes , Animales , Antioxidantes/metabolismo , Aceite de Soja/metabolismo , Disbiosis , ARN Ribosómico 16S , Dieta/veterinaria , Perciformes/genética , ARN Mensajero/metabolismo , Alimentación Animal/análisis
14.
Fish Shellfish Immunol ; 143: 109214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977544

RESUMEN

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.


Asunto(s)
Butiratos , Peces Planos , Animales , Butiratos/metabolismo , Peces Planos/metabolismo , Riñón Cefálico/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Autofagia , Interleucina-22
15.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982929

RESUMEN

Endoplasmic reticulum (ER) homeostasis plays a vital role in cell physiological functions. Various factors can destroy the homeostasis of the ER and cause ER stress. Moreover, ER stress is often related to inflammation. Glucose-regulated protein 78 (GRP78) is an ER chaperone, which plays a vital role in maintaining cellular homeostasis. Nevertheless, the potential effects of GRP78 on ER stress and inflammation is still not fully elucidated in fish. In the present study, ER stress and inflammation was induced by tunicamycin (TM) or palmitic acid (PA) in the macrophages of large yellow croakers. GRP78 was treated with an agonist/inhibitor before or after the TM/PA treatment. The results showed that the TM/PA treatment could significantly induce ER stress and an inflammatory response in the macrophages of large yellow croakers whereas the incubation of the GRP78 agonist could reduce TM/PA-induced ER stress and an inflammatory response. Moreover, the incubation of the GRP78 inhibitor could further induce TM/PA-induced ER stress and an inflammatory response. These results provide an innovative idea to explain the relationship between GRP78 and TM/PA-induced ER stress or inflammation in large yellow croakers.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Perciformes , Animales , Estrés del Retículo Endoplásmico , Macrófagos , Inflamación , Tunicamicina/farmacología , Ácido Palmítico/farmacología
16.
Aquac Nutr ; 2023: 2687734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860969

RESUMEN

An 8-week growth experiment was conducted to investigate effects of tributyrin (TB) supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of juvenile large yellow croaker (Larimichthys crocea) (initial weight of 12.90 ± 0.02 g) fed diets with high level of Clostridium autoethanogenum protein (CAP). In the negative control diet, 40% fish meal was used as the major source of protein (named as FM), while 45% fish meal protein of FM was substituted with CAP (named as FC) to form a positive control diet. Based on the FC diet, grade levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin were added to formulate other five experimental diets. Results showed that fish fed diets with high levels of CAP significantly decreased the weight gain rate (WGR) and specific growth rate (SGR) compared with fish fed the FM diet (P < 0.05). WGR and SGR were significantly higher than in fish fed diets with 0.05% and 0.1% tributyrin that fed the FC diet (P < 0.05). Supplementation of 0.1% tributyrin significantly elevated fish intestinal lipase and protease activities compared to FM and FC diets (P < 0.05). Meanwhile, compared to fish fed the FC diet, fish fed diets with 0.05% and 0.1% tributyrin showed remarkably higher intestinal total antioxidant capacity (T-AOC). Malondialdehyde (MDA) content in the intestine of fish fed diets with 0.05%-0.4% tributyrin was remarkably lower than those in the fish fed the FC diet (P < 0.05). The mRNA expressions of tumor necrosis factor α (tnfα), interleukin-1ß (il-1ß), interleukin-6 (il-6), and interferon γ (ifnγ) were significantly downregulated in fish fed diets with 0.05%-0.2% tributyrin, and the mRNA expression of il-10 was significantly upregulated in fish fed the 0.2% tributyrin diet (P < 0.05). In regard to antioxidant genes, as the supplementation of tributyrin increased from 0.05% to 0.8%, the mRNA expression of nuclear factor erythroid 2-related factor 2 (nrf2) demonstrated a trend of first rising and then decreasing. However, the mRNA expression of Kelch-like ECH-associated protein 1 (keap1) was remarkably lower in fish fed the FC diet than that fed diets with tributyrin supplementation (P < 0.05). Overall, fish fed tributyrin supplementation diets can ameliorate the negative effects induced by high proportion of CAP in diets, with an appropriate supplementation of 0.1%.

17.
Fish Physiol Biochem ; 49(4): 627-639, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37341909

RESUMEN

Adipose tissue is an essential tissue for lipid deposition in fish and is associated with excess lipid accumulation in aquaculture. However, the knowledge of the distribution and characterization of adipose tissue in fish still needs further investigation. This study for the first time discovered perirenal adipose tissue (PAT) in large yellow croaker by MRI and CT technologies. Then, the morphological and cytological characteristics of PAT were observed, showing a typical characteristic of white adipose tissue. Meanwhile, the mRNA expression of marker genes of white adipose tissue was highly expressed in PAT compared with the liver and muscle in large yellow croaker. Moreover, based on the discovery of PAT, preadipocytes from PAT were isolated, and the differentiation system of preadipocytes was established. The lipid droplet and TG content of cell were gradually increased during adipocyte differentiation. In addition, mRNA expressions of lipoprotein lipase, adipose triglyceride lipase, and transcription factors related to adipogenesis (cebpα, srebp1, pparα, and pparγ) were quantified to explain the regulation mechanism during the differentiation process. In summary, the present study first discovered perirenal adipose tissue in fish, then explored the characterization of PAT, and revealed the regulation of adipocyte differentiation. These results could advance the understanding of adipose tissue in fish and provide a novel idea for the study of the mechanism of lipid accumulation.


Asunto(s)
Tejido Adiposo , Perciformes , Animales , Tejido Adiposo/metabolismo , Diferenciación Celular , Perciformes/genética , Perciformes/metabolismo , Adipocitos/metabolismo , ARN Mensajero/metabolismo , Lípidos , Proteínas de Peces/genética
18.
J Nutr ; 152(8): 1991-2002, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679100

RESUMEN

BACKGROUND: Although dietary DHA alleviates Toll-like receptor (TLR)-associated chronic inflammation in fish, the underlying mechanism is not well understood. OBJECTIVES: This study aimed to explore the role of Tlr22 in the innate immunity of large yellow croaker and investigate the anti-inflammatory effects of DHA on Tlr22-triggered inflammation. METHODS: Head kidney-derived macrophages of croaker and HEK293T cells were or were not pretreated with 100 µM DHA for 10 h prior to polyinosinic-polycytidylic acid (poly I:C) stimulation. We executed qRT-PCR, immunoblotting, and lipidomic analysis to examine the impact of DHA on Tlr22-triggered inflammation and membrane lipid composition. In vivo, croakers (12.03 ± 0.05 g) were fed diets containing 0.2% [control (Ctrl)], 0.8%, and 1.6% DHA for 8 wk before injection with poly I:C. Inflammatory genes expression and rafts-related lipids and protein expression were measured in the head kidney. Data were analyzed by ANOVA or Student t test. RESULTS: The activation of Tlr22 by poly I:C induced inflammation, and DHA diminished Tlr22-targeted inflammatory gene expression by 56-73% (P ≤ 0.05). DHA reduced membrane sphingomyelin (SM) and SFA-containing phosphatidylcholine (SFA-PC) contents, as well as lipid raft marker caveolin 1 amounts. Furthermore, lipid raft disruption suppressed Tlr22-induced Nf-κb and interferon h activation and p65 nuclear translocation. In vivo, expression of Tlr22 target inflammatory genes was 32-64% lower in the 1.6% DHA group than in the Ctrl group upon poly I:C injection (P ≤ 0.05). Also, the 1.6% DHA group showed a reduction in membrane SM and SFA-PC contents, accompanied by a decrease in caveolin 1 amounts, compared with the Ctrl group. CONCLUSIONS: The activation of Tlr22 signaling depends on lipid rafts, and DHA ameliorates the Tlr22-triggered inflammation in both head kidney and head kidney-derived macrophages of croaker partially by altering membrane SMs and SFA-PCs that are required for lipid raft organization.


Asunto(s)
Ácidos Docosahexaenoicos , Perciformes , Animales , Caveolina 1/metabolismo , Caveolina 1/farmacología , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Microdominios de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Poli I/metabolismo , Poli I/farmacología , Esfingomielinas/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
19.
FASEB J ; 35(10): e21900, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547130

RESUMEN

Previous studies have shown that endoplasmic reticulum (ER) stress contributes to hepatic steatosis in several manners. However, how lipid droplet (LD) proteins participate in this process has rarely been reported. In the present study, ER stress was induced at both in vitro and in vivo levels with tunicamycin in large yellow croaker (Larimichthys crocea). Effects of LD protein perilipin2 (PLIN2) on hepatic lipid accumulation and lipoprotein transport under normal physiological condition and ER stress were then explored using dsRNA mediated knockdown. Subsequently, the transcriptional regulation of plin2 expression by transcription factors generated in the unfolded protein response (UPR) was determined by dual-luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility-shift assay. We demonstrated that ER stress could promote LDs accumulation and inhibit lipoprotein transport by transcriptionally upregulating PLIN2 in liver. Among the transcription factors generated by UPR, spliced X-box binding protein1 can directly upregulated the expression of plin2, whereas C/EBP homologous protein can upregulate the expression of plin2 through peroxisome proliferator activated-receptor α. These results revealed that the LD protein PLIN2 played an important role in ER stress-induced hepatic steatosis, which might be a novel mechanism explaining hepatic steatosis triggered by ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Hígado Graso/metabolismo , Proteínas de Peces/biosíntesis , Perciformes/metabolismo , Perilipina-2/biosíntesis , Transcripción Genética , Regulación hacia Arriba , Animales
20.
Br J Nutr ; : 1-14, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35811407

RESUMEN

The nutritional status experienced in the early development of life plays a vital role in the long-term metabolic state of the individual, which is known as nutritional programming. The present study investigated the long-term effects of vegetable oil (VO) nutritional programming during the early life of large yellow croaker. First, larvae were fed either a fish oil (FO) diet or a VO diet for 30 d. Subsequently, under the same conditions, all fish were fed a commercial diet for 90 d and thereafter challenged with an FO or VO diet for 30 d. The results showed that growth performance was significantly lower in larvae fed the VO diet than in those in fed the FO diet in the stimulus phase. Notably, VO nutritional history fish showed lower levels of liver lipids liver total triglycerides and serum nonesterified free fatty acids than the FO nutritional history fish when juveniles were challenged with the VO diet, which was consistent with the expression of lipogenesis-related genes and proteins. Moreover, the VO nutritional history fish showed lower liver damage and higher antioxidant capacity than FO nutritional history fish when challenged with the VO diet. In summary, this study showed that a short VO stimulus during the early life stage of large yellow croaker, had a long-term effect on lipid metabolism and the antioxidant system. Specifically, VO nutritional programming had a positive effect on alleviating abnormal lipid deposition on the liver, liver damage, and the reduction of hepatic antioxidant capacity caused by a VO diet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA