Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 37(33): 9973-9981, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34388343

RESUMEN

Structure and interfacial properties are important factors that affect a spinel's adsorption performance. In this article, by changing the water content in a precursor during synthesis, the interfacial properties of normal and inverse spinels were tuned to improve Sb adsorption. The results showed that changing the water content did not alter the crystal structure of synthesized zinc ferrite (ZnFe2O4) and cobalt ferrite (CoFe2O4), but it had a significant effect on the crystallite size and the number of surface hydroxyl groups. For normal spinel ZnFe2O4 and inverse spinel CoFe2O4, the crystallite size decreased while the surface hydroxyl groups increased when the water content gradually increased from 1 to 8 mL. Spinels with smaller crystallite size and more surface hydroxyl groups enhanced Sb adsorption. The adsorption capacity of ZnFe2O4 and CoFe2O4 for low concentrations of Sb(V) increased from 8.45 and 10.64 mg/g to 15.05 and 17.00 mg/g, respectively. This work has greatly improved the adsorption capacity of spinel materials through a simple tunable method and is expected to provide new ideas for the interfacial tuning of spinel materials, which shows great potential applications for wastewater treatment.

2.
J Hazard Mater ; 470: 134221, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615651

RESUMEN

Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.


Asunto(s)
Compuestos de Magnesio , Metales Pesados , Minería , Compuestos de Silicona , Sulfatos , Contaminantes Químicos del Agua , Humedales , Sulfatos/química , Metales Pesados/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Compuestos de Silicona/química , Compuestos de Magnesio/química , Ácidos/química , Oxidación-Reducción , Biodegradación Ambiental , Concentración de Iones de Hidrógeno
3.
Chemosphere ; 350: 141059, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163469

RESUMEN

Phthalate acid esters (PAEs) are frequently detected in the global environment and can cause potential health hazards. In this study, quantitative exposure risk assessment was undertaken to derive soil generic assessment criteria (GAC) for six representative PAEs under the agricultural land use in the evaluated Chinese regions, which coupled multi-media transport and human exposure models based on multiple exposure pathways including vegetables consumption, dermal absorption, ingestion of soil and dust, and the exposure from non-soil sources. It is identified that the PAEs in agricultural soil are dominated by DEHP and DnBP representing 72-96% of the total PAEs. The GAC for BBP and DEHP, calculated on the basis of region-specific exposure parameters and soil properties in various locations, are stringent, signifying greater potential health risks from exposure to them, warranting more rigorous contamination management. The proposed soil GAC for plastic debris are 100, 107, 73 and 88 mg kg-1 for Heilongjiang Province, Beijing City, Jiangsu and Guangdong Provinces respectively. Additionally, the potential risks of 1.68 × 10-6 and 7 × 10-6 are identified for BBP and DEHP in Guangdong Province as indicated by the exceedance of target risk level of 1 × 10-6, with the consumption of vegetables being the dominant contributor to the total estimated PAEs exposure. Overall, this methodology based on the coupled contaminant transport and exposure models incorporating region-specific data provides a technical framework to derive science-based soil GAC for representative PAEs for maintaining and assessing soil quality and food safety under the agricultural land use.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Ésteres/análisis , Ácidos Ftálicos/análisis , Suelo , Verduras , Medición de Riesgo , China , Dibutil Ftalato/análisis
4.
Environ Technol ; : 1-10, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37042297

RESUMEN

The application of in-situ chemical oxidative remediation for contaminated soils has attracted extensive attention, but the effects of remediation processes on soil physical and chemical properties are rarely studied. Herein, a ferrous-activated persulphate oxidation system for remediating dibutyl phthalate (DBP)-polluted soil was simulated in the soil column to explore the effects of in-situ oxidative remediation on soil properties in the longitudinal direction. The DBP content in the soil column was used as an indicator of oxidation strength and the correlation between N, P, soil particle size and oxidation strength was analysed. The experiment results showed that the settling performance of polluted soil after remediation improved and the distribution of the soil particle size at 128 nm disappeared after oxidation, indicating that the suspended solids in the experimental soil were mainly fine clay particles. The oxidation system can promote the conversion of organic nitrogen to inorganic nitrogen and migration characteristics of nitrogen and phosphorus, to aggravate the loss of TN and TP in the soil. The average soil particle size (d50), TN, NH4-N, available phosphorus (Ava-P), exchangeable phosphorus (Ex-P) and organic phosphorus(Or-P) were significantly correlated with oxidation strength; and stable pH in the soil column (pH = 3), showing that the changes in the longitudinal direction of d50 (smaller), TN, NH4-N, Ava-P, Ex-P, and Or-P resulted from the weakening of the longitudinal oxidation strength in the direction of the soil column.

5.
Sci Total Environ ; 903: 166601, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634714

RESUMEN

Acid mine drainage (AMD) rich in arsenic (As) and antimony (Sb) is considered as a significant environmental challenge internationally. However, simultaneous removal of As and Sb from AMD is still inadequately studied. In this study, a highly effective and simple approach was proposed for mitigating As and Sb-rich AMD, which involves in-situ formation of layered double hydroxides (LDHs). Following the treatment, the residual concentrations of iron (Fe), magnesium (Mg), sulfate, As and Sb in field AMD were decreased from their initial concentrations of 1690, 1524, 2055, 7.8 and 10.6 mg L-1, respectively, to 1.3, 12.4, 623, 0.006 and 0.004 mg L-1, respectively. Chemical formula of the resulting As and Sb-loaded LDHs can be identified as Mg4.226Fe2.024OH2SO4AsSb0.006∙mH2O. The dissolution rates of metal(loid)s in As and Sb-loaded LDH were lower than 1% under strongly acidic and alkaline environments. In presence of the mixed adsorbates, the As immobilization capacity by LDHs was significantly decreased, with an apparent intervention from Sb. However, As did not have a significant effect on the immobilization of Sb by LDH. As was immobilized by LDHs through anion exchange and complexation with -OH groups, while Sb was captured by anion exchange and complexation with [Formula: see text] . Density functional theory (DFT) calculations further proved the above conclusions. This novel approach is effective and can be applied for in-situ AMD treatment from abandoned mines.

6.
Adv Mater ; 35(32): e2301321, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37154271

RESUMEN

Information-processing devices are the core components of modern electronics. Integrating them into textiles is the indispensable demand for electronic textiles to form close-loop functional systems. Memristors with crossbar configuration are regarded as promising building blocks to design woven information-processing devices that seamlessly unify with textiles. However, the memristors always suffer from severe temporal and spatial variations due to the random growth of conductive filaments during filamentary switching processes. Here, inspired by the ion nanochannels across synaptic membranes, a highly reliable textile-type memristor made of Pt/CuZnS memristive fiber with aligned nanochannels, showing small set voltage variation (<5.6%) under ultralow set voltage (≈0.089 V), high on/off ratio (≈106 ), and low power consumption (0.1 nW), is reported. Experimental evidence indicate that nanochannels with abundant active S defects can anchor silver ions and confine their migrations to form orderly and efficient conductive filaments. Such memristive performances enable the resultant textile-type memristor array to have high device-to-device uniformity and process complex physiological data like brainwave signals with high recognition accuracy (95%). The textile-type memristor arrays are mechanically durable to withstand hundreds of bending and sliding deformations, and seamlessly unified with sensing, power-supplying, and displaying textiles/fibers to form all-textile integrated electronic systems for new generation human-machine interactions.

7.
Sci Total Environ ; 843: 157120, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35787898

RESUMEN

Implementing an economical and effective measure for treating acid mine drainage (AMD) from abandoned mines using low-cost restoration reagents present a significant challenge. In this study, natural attapulgite (AT) and soda residue (SR) composite particles (AT-SR) were firstly prepared and utilized in AMD treatment. The efficiencies and mechanisms of AT-SR composites for regulating acidity and removing metals in AMD, the critical factors influencing the treatment efficiencies, and the regeneration performance and environmental risk were investigated. It is illustrated that AT and SR quality ratio of 5:5, dosage of 0.5 g L-1, particle size < 1.5 mm, concentrations of 150 mg L-1 for Fe, 75 mg L-1 for Mn and 100 mg L-1 for Cu, Zn, Cd and Pb, and adsorption time of 120 min were the optimized conditions. The maximum adsorption capacities of Fe, Mn, Cu, Zn, Cd and Pb under single metal scenarios were 51.61, 22.30, 37.05, 40.21, 37.39 and 49.53 mg g-1, respectively. Under the mixed metal scenarios, competitive adsorption was predominated with the rate constants in the reducing order of 3.169 for Fe > 0.841 for Cu > 0.657 for Pb > 0.083 for Zn > 0.024 for Cd > 0.006 for Mn. The experimental data was fitted well with the pseudo-second-order and the Freundlich isotherm models. AT-SR is an outstanding neutralizer for AMD due to its richness in calcium and magnesium oxides and the spent AT-SR composites could be easily regenerated while maintaining high metal removal efficiencies under the subsequent usages. It is determined under the aqua regia digestion and Toxicity Characteristic Leaching Procedure (TCLP) tests that AT-SR can be used safely without posing environmental risks, thus promoting the resource recovery and utilization of soda residue and providing a green and effective method for treating AMD.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ácidos , Cadmio , Plomo , Compuestos de Magnesio , Metales Pesados/análisis , Minería , Compuestos de Silicona , Contaminantes Químicos del Agua/análisis
8.
J Hazard Mater ; 385: 121552, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31733996

RESUMEN

A high-efficiency hollow BiOCl@CeO2 heterostructured microspheres with type-II staggered-gap type was successfully synthesized by precipitation-hydrothermal process loaded with BiOCl nanoparticles on CeO2 microspheres. XRD, FT-IR, EDS, SEM, HRTEM and XPS results show that the prepared materials have good crystallization, morphology and retain hollow spherical structure of CeO2. Batch experiments indicate that the photocatalytic performance of BiOCl@CeO2 towards Tetracycline (TC) is superior to pure BiOCl or CeO2 owing to the distinctive hollow structures and the formed heterostructure between BiOCl and CeO2. Cyclic experiment exhibits that the optimal BiOCl@CeO2 photocatalyst can still photodegrade more than 80% of TC in 120 min after 4 cycles. Additionally, the reactive oxidation species (ROS) trapping experiments reveal that the critical ROS include photogenerated holes (h+) and superoxide radical anions (O2-). Finally, the possible degradation pathways of TC and enhanced photodegradation mechanism was systematically discussed. On this basis, the hollow BiOCl@CeO2 heterostructured microspheres provide a new alternative with great potential in efficient visible-light-driven photodegradation of persistent organic pollutants.


Asunto(s)
Antibacterianos/química , Bismuto/química , Cerio/química , Microesferas , Contaminantes Orgánicos Persistentes/química , Tetraciclina/química , Catálisis/efectos de la radiación , Cerio/efectos de la radiación , Restauración y Remediación Ambiental/métodos , Oxidación-Reducción
9.
J Hazard Mater ; 384: 121466, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31679891

RESUMEN

Organic phosphorus is an important source of eutrophication. In this study, to understand the mechanism of organophosphorus photodegradation, humic acid-Fe3+ (HA-Fe3+) complexes were prepared as a sensitizer, and glyphosate (GP) was used as a substrate for photodegradation. The effects of the initial GP concentration, HA concentration, Fe3+ concentration and microbial factors on photodegradation were investigated. The initial concentrations of GP, HA and Fe3+ could significantly affect the degradation rate of GP. Phosphate is the main product of GP photodegradation. Based on the identification of the active species in the reaction process, t-butanol was found to have the most significant inhibitory effect on the degradation. The reaction rate after t-butanol treatment was reduced from 0.017 to 0.003. This confirmed that OH was the main oxidant in the system, which was also demonstrated by EPR spectroscopy. A possible mechanism of GP photodegradation sensitized by HA-Fe3+ complexes was revealed for the first time. The HA-Fe3+ complexes in the reaction system were photodegraded and oxidized to finally produce OH, which promotes GP photodegradation. This study facilitates understanding the phosphorus cycle in a water environment and provides a scientific basis for the restoration of eutrophic lakes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA