Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2002): 20230110, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37403505

RESUMEN

Temperature is a key factor mediating organismal fitness and has important consequences for species' ecology. While the mean effects of temperature on behaviour have been well-documented in ectotherms, how temperature alters behavioural variation among and within individuals, and whether this differs between the sexes, remains unclear. Such effects likely have ecological and evolutionary consequences, given that selection acts at the individual level. We investigated the effect of temperature on individual-level behavioural variation and metabolism in adult male and female Drosophila melanogaster (n = 129), by taking repeated measures of locomotor activity and metabolic rate at both a standard temperature (25°C) and a high temperature (28°C). Males were moderately more responsive in their mean activity levels to temperature change when compared to females. However, this was not true for either standard or active metabolic rate, where no sex differences in thermal metabolic plasticity were found. Furthermore, higher temperatures increased both among- and within-individual variation in male, but not female, locomotor activity. Given that behavioural variation can be critical to population persistence, we suggest that future studies test whether sex differences in the amount of behavioural variation expressed in response to temperature change may result in sex-specific vulnerabilities to a warming climate.


Asunto(s)
Conducta Animal , Drosophila melanogaster , Animales , Femenino , Masculino , Temperatura , Conducta Animal/fisiología , Calor , Locomoción , Cambio Climático
2.
PLoS Comput Biol ; 16(4): e1007853, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32352964

RESUMEN

The structure of tubular transport networks is thought to underlie much of biological regularity, from individuals to ecosystems. A core assumption of transport network models is either area-preserving or area-increasing branching, such that the summed cross-sectional area of all child branches is equal to or greater than the cross-sectional area of their respective parent branch. For insects, the most diverse group of animals, the assumption of area-preserving branching of tracheae is, however, based on measurements of a single individual and an assumption of gas exchange by diffusion. Here we show that ants exhibit neither area-preserving nor area-increasing branching in their abdominal tracheal systems. We find for 20 species of ants that the sum of child tracheal cross-sectional areas is typically less than that of the parent branch (area-decreasing). The radius, rather than the area, of the parent branch is conserved across the sum of child branches. Interpretation of the tracheal system as one optimized for the release of carbon dioxide, while readily catering to oxygen demand, explains the branching pattern. Our results, together with widespread demonstration that gas exchange in insects includes, and is often dominated by, convection, indicate that for generality, network transport models must include consideration of systems with different architectures.


Asunto(s)
Hormigas/fisiología , Transporte Biológico/fisiología , Biología Computacional/métodos , Modelos Biológicos , Tráquea/fisiología , Animales , Dióxido de Carbono/metabolismo , Oxígeno/metabolismo
3.
Curr Res Insect Sci ; 3: 100051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36591563

RESUMEN

Biological invasions have significant ecological and economic impacts. Much attention is therefore focussed on predicting establishment and invasion success. Trait-based approaches are showing much promise, but are mostly restricted to investigations of plants. Although the application of these approaches to animals is growing rapidly, it is rare for arthropods and restricted mostly to investigations of thermal tolerance. Here we study the extent to which desiccation tolerance and its phenotypic plasticity differ between introduced (nine species) and indigenous (seven species) Collembola, specifically testing predictions of the 'ideal weed' and 'phenotypic plasticity' hypotheses of invasion biology. We do so on the F2 generation of adults in a full factorial design across two temperatures, to elicit desiccation responses, for the phenotypic plasticity trials. We also determine whether basal desiccation resistance responds to thermal laboratory natural selection. We first show experimentally that acclimation to different temperatures elicits changes to cuticular structure and function that are typically associated with water balance, justifying our experimental approach. Our main findings reveal that basal desiccation resistance differs, on average, between the indigenous and introduced species, but that this difference is weaker at higher temperatures, and is driven by particular taxa, as revealed by phylogenetic generalised least squares approaches. By contrast, the extent or form of phenotypic plasticity does not differ between the two groups, with a 'hotter is better' response being most common. Beneficial acclimation is characteristic of only a single species. Laboratory natural selection had little influence on desiccation resistance over 8-12 generations, suggesting that environmental filtering rather than adaptation to new environments may be an important factor influencing Collembola invasions.

4.
Science ; 376(6597): 1110-1114, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653484

RESUMEN

The rarity of parthenogenetic species is typically attributed to the reduced genetic variability that accompanies the absence of sex, yet natural parthenogens can be surprisingly successful. Ecological success is often proposed to derive from hybridization through enhanced genetic diversity from repetitive origins or enhanced phenotypic breadth from heterosis. Here, we tested and rejected both hypotheses in a classic parthenogen, the diploid grasshopper Warramaba virgo. Genetic data revealed a single hybrid mating origin at least 0.25 million years ago, and comparative analyses of 14 physiological and life history traits showed no evidence for altered fitness relative to its sexual progenitors. Our findings imply that the rarity of parthenogenesis is due to constraints on origin rather than to rapid extinction.


Asunto(s)
Evolución Biológica , Saltamontes , Partenogénesis , Animales , Quimera , Diploidia , Saltamontes/genética , Hibridación Genética , Partenogénesis/genética
5.
mSystems ; 5(6)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203691

RESUMEN

How the diverse bacterial communities inhabiting desert soils maintain energy and carbon needs is much debated. Traditionally, most bacteria are thought to persist by using organic carbon synthesized by photoautotrophs following transient hydration events. Recent studies focused on Antarctic desert soils have revealed, however, that some bacteria use atmospheric trace gases, such as hydrogen (H2), to conserve energy and fix carbon independently of photosynthesis. In this study, we investigated whether atmospheric H2 oxidation occurs in four nonpolar desert soils and compared this process to photosynthesis. To do so, we first profiled the distribution, expression, and activities of hydrogenases and photosystems in surface soils collected from the South Australian desert over a simulated hydration-desiccation cycle. Hydrogenase-encoding sequences were abundant in the metagenomes and metatranscriptomes and were detected in actinobacterial, acidobacterial, and cyanobacterial metagenome-assembled genomes. Native dry soil samples mediated H2 oxidation, but rates increased 950-fold following wetting. Oxygenic and anoxygenic phototrophs were also detected in the community but at lower abundances. Hydration significantly stimulated rates of photosynthetic carbon fixation and, to a lesser extent, dark carbon assimilation. Hydrogenase genes were also widespread in samples from three other climatically distinct deserts, the Namib, Gobi, and Mojave, and atmospheric H2 oxidation was also greatly stimulated by hydration at these sites. Together, these findings highlight that H2 is an important, hitherto-overlooked energy source supporting bacterial communities in desert soils. Contrary to our previous hypotheses, however, H2 oxidation occurs simultaneously rather than alternately with photosynthesis in such ecosystems and may even be mediated by some photoautotrophs.IMPORTANCE Desert ecosystems, spanning a third of the earth's surface, harbor remarkably diverse microbial life despite having a low potential for photosynthesis. In this work, we reveal that atmospheric hydrogen serves as a major previously overlooked energy source for a large proportion of desert bacteria. We show that both chemoheterotrophic and photoautotrophic bacteria have the potential to oxidize hydrogen across deserts sampled across four continents. Whereas hydrogen oxidation was slow in native dry deserts, it increased by three orders of magnitude together with photosynthesis following hydration. This study revealed that continual harvesting of atmospheric energy sources may be a major way that desert communities adapt to long periods of water and energy deprivation, with significant ecological and biogeochemical ramifications.

6.
Physiol Biochem Zool ; 92(2): 163-176, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694106

RESUMEN

One of the most extreme examples of parasite adaptation comes from terrestrial ectoparasites exploiting marine hosts. Despite the ubiquity of such ectoparasitism and its ecological and evolutionary importance, investigations of the responses of ectoparasites to conditions encountered on their hosts are rare. In the case of penguins and their ticks, current understanding suggests that ticks freely parasitize their hosts on land but are incapable of surviving extended oceanic journeys. We examined this conjecture by assessing the physiological capacity of little penguin ticks to endure at-sea foraging and dispersal events of their hosts. Survival in penguins ticks was not significantly compromised by exposure to depths commonly associated with host dives (40 and 60 m), repeated seawater exposure relevant to the most common (30 s) and longest (120 s) recorded host dives, or extended (48 h) exposure to seawater. Mean (±SD) closed-phase durations in adult and nymphal ticks exhibiting discontinuous gas exchange ( 339±237 and 240±295 s, respectively) exceeded that of the maximum recorded host dive duration (120 s). Normoxic-anoxic-normoxic respirometry also confirmed spiracle closure. Mean metabolic rates ( 0.354±0.220 and 4.853±4.930 µL/h at 25°C for unfed and fed adult females, respectively) were significantly influenced by temperature; optimal and LT50 temperatures for adult ticks and fed nymphal ticks were typically higher than swimming penguin body temperatures. These findings suggest that marine host dispersal is unlikely to present an insurmountable barrier to long-distance tick dispersal. Such dispersal has important implications for evolutionary theory, conservation, and epidemiology.


Asunto(s)
Distribución Animal , Interacciones Huésped-Parásitos , Ixodes/fisiología , Spheniscidae/fisiología , Spheniscidae/parasitología , Animales , Femenino , Ixodes/crecimiento & desarrollo , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Agua de Mar , Victoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA