Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R53-R65, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955132

RESUMEN

To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate whole body dry and evaporative heat exchange. These responses are modulated by the rise in body temperature (thermal factors), as well as several nonthermal factors implicated in the cardiovascular response to exercise (i.e., central command, mechanoreceptors, and metaboreceptors). However, the way these nonthermal factors interact with thermal factors to maintain heat balance remains poorly understood. We therefore used direct calorimetry to quantify the effects of dose-dependent increases in the activation of these nonthermal stimuli on whole body dry and evaporative heat exchange during dynamic exercise. In a randomized crossover design, eight participants performed 45-min cycling at a fixed metabolic heat production (200 W/m2) in warm, dry conditions (30°C, 20% relative humidity) on four separate occasions, differing only in the level of lower-limb compression applied via bilateral thigh cuffs pressurized to 0, 30, 60, or 90 mmHg. This model provoked increments in nonthermal activation while ensuring the heat loss required to balance heat production was matched across trials. At end-exercise, dry heat loss was 2 W/m2 [1, 3] lower per 30-mmHg pressure increment (P = 0.006), whereas evaporative heat loss was elevated 5 W/m2 [3, 7] with each pressure increment (P < 0.001). Body heat storage and esophageal temperature did not differ across conditions (both P ≥ 0.600). Our findings indicate that the nonthermal factors engaged during exercise exert dose-dependent, opposing effects on whole body dry and evaporative heat exchange, which do not significantly alter heat balance.NEW & NOTEWORTHY To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate dry and evaporative heat exchange. These responses are modulated by body temperatures (thermal factors) and several nonthermal factors (e.g., central command, metaboreceptors), although the way thermal and nonthermal factors interact to regulate body temperature is poorly understood. We demonstrate that nonthermal factors exert dose-dependent, opposing effects on dry and evaporative heat loss, without altering heat storage during dynamic exercise.


Asunto(s)
Regulación de la Temperatura Corporal , Calor , Humanos , Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Sudoración , Termogénesis/fisiología
2.
Am J Physiol Heart Circ Physiol ; 325(1): H66-H76, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172076

RESUMEN

Endurance exercise induces cardiovascular adaptations; the athletic phenotypes of the heart and arteries are well characterized, but few studies have investigated the effects of chronic exercise on the venous system. The aim of this study was to describe the anatomy and function of lower-limb deep and superficial veins in athletes compared with controls. Endurance-trained athletes and untrained controls (13 males, 7 females per group) were examined using ultrasound to measure vein diameter and flow, and air plethysmography to assess calf venous volume dynamics and muscle pump function at rest, during a single step, ambulation (10 steps) and after acute treadmill exercise (30 min ∼80% age-predicted heart rate maximum). Diameters of three of the seven deep veins assessed were larger in athletes (P ≤ 0.0167) and more medial calf perforators were detectable (5 vs. 3, P = 0.0039). Calf venous volume was 22% larger in athletes (P = 0.0057), and calf muscle pump ejection volume and ambulatory venous volume after 10 steps were both greater in athletes (20 and 46% respectively, P ≤ 0.0482). Following acute exercise, flow recovery profiles in deep and superficial veins draining the leg were not different between groups, despite athletes performing approximately four times more work. After exercise, venous volume and ejection volume were reduced by ∼20% in athletes with no change in controls (interaction, P ≤ 0.0372) and although ambulatory venous volume reduced, this remained greater in athletes. These findings highlight venous adaptations that compensate for the demands of regular endurance exercise, all of which are suited to enhance flow through the lower-limb venous system.NEW & NOTEWORTHY Although much literature exists describing adaptations to the heart and arteries in response to endurance exercise training, less is known about the effects on the venous system. Characteristics of "the athlete's vein" described here include deep and perforator vein remodeling, improved drainage, and greater calf venous volume at rest and on calf muscle pump activation. Following exercise, athletes demonstrated prompt flow recovery and appropriate volume reductions, and veins beneficially adapt to better tolerate the demands of regular physical activity.


Asunto(s)
Extremidad Inferior , Venas , Masculino , Femenino , Humanos , Venas/diagnóstico por imagen , Extremidad Inferior/irrigación sanguínea , Ultrasonografía , Pletismografía , Atletas , Resistencia Física
3.
Microvasc Res ; 146: 104470, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549373

RESUMEN

OBJECTIVES: Evaluate reliability of laser-Doppler flowmetry derived cutaneous vasodilation on the upper and lower limbs during gradual local heating. METHODS: In twenty-eight young adults (21 (SD 3) years, 14 females), absolute cutaneous vascular conductance (CVCabs) and CVC normalized to maximum vasodilation at 44 °C (%CVCmax) were assessed at two adjacent sites on each of the forearm and calf during gradual local skin heating (33-42 °C at 1 °C·5 min-1) for two identical trials (∼1 week apart). Responses were assessed for baseline, the steady-state heating plateau at 42 °C and the span (i.e. plateau-baseline). RESULTS: Between-day reliability was characterized as measurement consistency across trials. Within-day reliability was characterized as within-limb measurement consistency across adjacent skin sites. Between- and within-day absolute reliability (coefficient of variation) generally improved with heating, from poor (>25 %) at baseline to good (<10 %) for %CVCmax and moderate (10-25 %) for CVCabs for plateau and span. However, relative reliability (intraclass correlation coefficient) was generally not acceptable (<0.70) for any condition. Responses were generally consistent for females and males and there were no major forearm and calf differences. CONCLUSIONS: Consistency of CVC estimates improved during gradual local heating with negligible limb and sex differences, which are important considerations for experimental design and interpretation.


Asunto(s)
Antebrazo , Vasodilatación , Humanos , Masculino , Femenino , Adulto Joven , Vasodilatación/fisiología , Antebrazo/irrigación sanguínea , Flujometría por Láser-Doppler , Calefacción , Reproducibilidad de los Resultados , Piel/irrigación sanguínea , Flujo Sanguíneo Regional
4.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R326-R335, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170329

RESUMEN

The objective of this study was 1) to examine pooled effects of hypertension on nitric oxide (NO)-dependent vasodilation during local heating across multiple nonglabrous skin regions, and 2) explore regional differences. Responses were compared between 14 participants with uncomplicated hypertension controlled with medication (7 females, 61 ± 6 yr) and 14 age-matched nonhypertensive controls (6 females; 60 ± 5 yr). Cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax), was assessed at the upper chest, abdomen, dorsal forearm, thigh, and lateral calf during local heating. Across all regions, local skin temperatures were simultaneously increased from 33°C to 42°C (1°C·10 s-1) and held until a stable heating plateau was achieved (∼40 min), followed by continuous infusion of 20 mM of NG-nitro-l-arginine methyl ester (l-NAME; ∼40 min) at all sites until a stable l-NAME plateau was achieved. The difference between heating and l-NAME plateaus was defined as the NO-contribution. Statistical equivalence for each heating phase was determined based on equivalence bounds of ±10%CVCmax for between-group differences. Pooled (all-regions) %CVCmax responses were equivalent for baseline (two one-sided t tests; P < 0.001), heating plateau (P = 0.002), l-NAME plateau (P = 0.028), and NO-contribution (P = 0.003). For individual regions, responses were equivalent at baseline for the abdomen, thigh, and calf, the heating plateau for the thigh, and the l-NAME plateau for the calf (all P < 0.05). Conversely, the calf heating plateau was lower in the hypertension group (t test; P < 0.05). Local heat-induced cutaneous vasodilation was statistically equivalent between individuals with uncomplicated, controlled hypertension, and nonhypertensive age-matched adults when pooled across multiple skin sites. Conversely, individual between-region comparisons were generally too variable to permit definitive conclusions.


Asunto(s)
Hipertensión , Vasodilatación , Adulto , Inhibidores Enzimáticos/farmacología , Femenino , Calor , Humanos , Masculino , Microdiálisis , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Flujo Sanguíneo Regional/fisiología , Piel/irrigación sanguínea
5.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R1-R13, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34786980

RESUMEN

Metaboreflex activation augments sweating during mild-to-moderate hyperthermia in euhydrated (isosmotic isovolemic) individuals. Recent work indicates that extracellular hyperosmolality may augment metaboreflex-mediated elevations in sympathetic nervous activity. Our primary objective was, therefore, to test the hypothesis that extracellular hyperosmolality would exacerbate metaboreflex-mediated increases in sweat rate. On two separate occasions, 12 young men [means (SD): 25 (5) yr] received a 90-min intravenous infusion of either 0.9% saline (isosmotic condition, ISO) or 3.0% saline (hyperosmotic condition, HYP), resulting in a postinfusion serum osmolality of 290 (3) and 301 (7) mosmol/kgH2O, respectively. A whole body water perfusion suit was then used to increase esophageal temperature by 0.8°C above resting. Participants then performed a metaboreflex activation protocol consisting of 90-s isometric handgrip exercise (40% of their predetermined maximum voluntary contraction), followed by 150 s of brachial occlusion (trapping produced metabolites within the limb). Metaboreflex-induced sweating was quantified as the change in global sweat rate (from preisometric handgrip exercise to brachial occlusion), estimated as the surface area-weighted average of local sweat rate on the abdomen, axilla, chest, bicep, quadriceps, and calf, measured using ventilated capsules (3.8 cm2). We also explored whether this response differed between body regions. The change in global sweat rate due to metaboreflex activation was significantly greater in HYP compared with ISO (0.03 mg/min/cm2 [95% confidence interval: 0.00, 0.06]; P = 0.047), but was not modulated by body region (site × condition interaction: P = 0.679). These findings indicate that extracellular hyperosmolality augments metaboreflex-induced increases in global sweat rate, with no evidence for region-specific differences.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Hipertermia/fisiopatología , Contracción Isométrica , Músculo Esquelético/inervación , Solución Salina Hipertónica/administración & dosificación , Sudoración , Sistema Nervioso Simpático/fisiopatología , Adulto , Humanos , Infusiones Intravenosas , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Estado de Hidratación del Organismo , Presión Osmótica , Adulto Joven
6.
Exp Physiol ; 107(4): 337-349, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34957632

RESUMEN

NEW FINDINGS: What is the central question to the study? Are primary indices of heat adaptation (e.g., expansion of plasma volume and reduction in resting core temperature) differentially affected by the three major modes of short-term heat acclimation, that is, exercise in the heat, hot water immersion and sauna? What it the main finding and its importance? The three modes elicited typical adaptations expected with short-term heat acclimation, but these were not significantly different between modes. This comparison has not previously been made and highlights that individuals can expect similar adaptation to heat regardless of the mode used. ABSTRACT: Heat acclimation (HA) can improve heat tolerance and cardiovascular health. The mode of HA potentially impacts the magnitude and time course of adaptations, but almost no comparative data exist. We therefore investigated adaptive responses to three common modes of HA, particularly with respect to plasma volume. Within a crossover repeated-measures design, 13 physically active participants (five female) undertook four, 5-day HA regimes (60 min/day) in randomised order, separated by ≥4 weeks. Rectal temperature (Tre ) was clamped at neutrality via 36.6°C (thermoneutral) water immersion (TWI; i.e., control condition), or raised by 1.5°C via heat stress in 40°C water, sauna (55°C, 52% relative humidity), or exercise in humid heat (40°C, 52% relative humidity; ExH). Adaptation magnitude was assessed as the pooled response across days 4-6, while kinetics was assessed via the 6-day time series. Plasma volume expansion was similar in all heated conditions but only higher than TWI in exercise in the heat (ExH) (by 4%, P = 0.036). Approximately two-thirds of the expansion was attained within the initial 24 h and was moderately related to that present on day 6, regardless of HA mode (r = 0.560-0.887). Expansion was mediated by conservation of both sodium and albumin content, with little evidence for these having differential roles between modes (P = 0.706 and 0.320, respectively). Resting Tre decreased by 0.1-0.3°C in all heated conditions, and systolic blood pressure decreased by 4 mmHg, but not differentially between conditions (P ≥ 0.137). In conclusion, HA mode did not substantially affect the magnitude or rate of adaptation in key resting markers of short-term HA.


Asunto(s)
Aclimatación , Calor , Aclimatación/fisiología , Adaptación Fisiológica , Ejercicio Físico/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Cinética
7.
Exp Physiol ; 107(5): 429-440, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35193165

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the profiles of acute physiological and psychophysical strain during and in recovery from different modes of heating, and to what extent do these diminish after repeated exposure? What is the main finding and its importance? Mode of heating affects the strain profiles during heat stress and recovery. Exercise in the heat incurred the greatest cardiovascular strain during heating and recovery. Humid heat was poorly tolerated despite heat strain being no greater than in other heating modes, and tolerance did not improve with multiple exposures. ABSTRACT: Heat stress is common and arises endogenously and exogenously. It can be acutely hazardous while also increasingly advocated to drive health and performance-related adaptations. Yet, the nature of strain (deviation in regulated variables) imposed by different heating modes is not well established, despite the potential for important differences. We, therefore, compared three modes of heat stress for thermal, cardiovascular and perceptual strain profiles during exposure and recovery when experienced as a novel stimulus and an accustomed stimulus. In a crossover design, 13 physically active participants (five females) underwent 5 days of 60-min exposures to hot water immersion (40°C), sauna (55°C, 54% relative humidity) and exercise in the heat (40°C, 52% relative humidity), and a thermoneutral water immersion control (36.5°C), each separated by ≥4 weeks. Physiological (thermal, cardiovascular, haemodynamic) and psychophysical strain responses were assessed on days 1 and 5. Sauna evoked the warmest skin (40°C; P < 0.001) but exercise in the heat caused the largest increase in core temperature, sweat rate, heart rate (post hoc comparisons all P < 0.001) and systolic blood pressure (P ≤ 0.002), and possibly decrease in diastolic blood pressures (P ≤ 0.130), regardless of day. Thermal sensation and feeling state were more favourable on day 5 than on day 1 (P ≤ 0.021), with all modes of heat being equivalently uncomfortable (P ≥ 0.215). Plasma volume expanded the largest extent during immersions (P < 0.001). The current data highlight that exercising in the heat generates a more complex strain profile, while passive heat stress in humid heat has lower tolerance and more cardiovascular strain than hot water immersion.


Asunto(s)
Trastornos de Estrés por Calor , Calor , Aclimatación/fisiología , Temperatura Corporal , Regulación de la Temperatura Corporal/fisiología , Estudios Cruzados , Femenino , Frecuencia Cardíaca/fisiología , Respuesta al Choque Térmico , Humanos , Masculino , Agua
8.
J Physiol ; 599(7): 1977-1996, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33586133

RESUMEN

KEY POINTS: The human brain is particularly vulnerable to heat stress; this manifests as impaired cognition, orthostatic tolerance, work capacity and eventually, brain death. The brain's limitation in the heat is often ascribed to inadequate cerebral blood flow (CBF), but elevated intracranial pressure is commonly observed in mammalian models of heat stroke and can on its own cause functional impairment. The CBF response to incremental heat strain was dependent on the mode of heating, decreasing by 30% when exposed passively to hot, humid air (sauna), while remaining unchanged or increasing with passive hot-water immersion (spa) and exercising in a hot environment. Non-invasive intracranial pressure estimates (nICP) were increased universally by 18% at volitional thermal tolerance across all modes of heat stress, and therefore may play a contributing role in eliciting thermal tolerance. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under mild to severe heating due to lower blood flow but similarly increased nICP. ABSTRACT: The human brain is particularly vulnerable to heat stress; this manifests as impaired cognitive function, orthostatic tolerance, work capacity, and eventually, brain death. This vulnerability is often ascribed to inadequate cerebral blood flow (CBF); however, elevated intracranial pressure (ICP) is also observed in mammalian models of heat stroke. We investigated the changes in CBF with incremental heat strain under three fundamentally different modes of heating, and assessed whether heating per se increased ICP. Fourteen fit participants (seven female) were heated to thermal tolerance or 40°C core temperature (Tc ; oesophageal) via passive hot-water immersion (spa), passive hot, humid air exposure (sauna), cycling exercise, and cycling exercise with CO2 inhalation to prevent heat-induced hypocapnia. CBF was measured with duplex ultrasound at each 0.5°C increment in Tc and ICP was estimated non-invasively (nICP) from optic nerve sheath diameter at thermal tolerance. At thermal tolerance, CBF was decreased by 30% in the sauna (P < 0.001), but was unchanged in the spa or with exercise (P ≥ 0.140). CBF increased by 17% when end-tidal PCO2 was clamped at eupnoeic pressure (P < 0.001). On the contrary, nICP increased universally by 18% with all modes of heating (P < 0.001). The maximum Tc was achieved with passive heating, and preventing hypocapnia during exercise did not improve exercise or thermal tolerance (P ≥ 0.146). Therefore, the regulation of CBF is dramatically different depending on the mode and dose of heating, whereas nICP responses are not. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under equivalent heat strain.


Asunto(s)
Trastornos de Estrés por Calor , Calefacción , Presión Sanguínea , Circulación Cerebrovascular , Ejercicio Físico , Femenino , Humanos , Presión Intracraneal
9.
Exp Physiol ; 106(3): 593-614, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33197089

RESUMEN

Observed individual variability in cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV) is extensive, especially during exposure to stressors such as heat. A large part of the observed variation may be related to the reliability (consistency) of the measurement. We therefore examined the test-retest reliability of cBRS and HRV measurements on three separate occasions in 14 young men (age: 24 (SD 5) years), at rest and during whole-body heating (water-perfused suit) to raise and clamp oesophageal temperature 0.6°C, 1.2°C and 1.8°C above baseline. Beat-to-beat measurements of RR interval and systolic blood pressure (BP) were obtained for deriving HRV (from RR), and cBRS calculated via (i) the spontaneous method, α coefficients and transfer function analysis at each level of heat strain, and (ii) during forced oscillations via squat-stand manoeuvres (0.1 Hz) before and after heating. Absolute values and changes in all cBRS estimates were variable but generally consistent with reductions in parasympathetic activity. cBRS estimates demonstrated poor absolute reliability (coefficient of variation ≥25%), but relative reliability (intraclass correlation coefficient; ICC) of some frequency estimates was acceptable (ICC ≥0.70) during low-heat strain (ICC: 0.56-0.74). After heating, forced oscillations in BP demonstrated more favourable responses than spontaneous oscillations (better reliability, lower minimum detectable change). Absolute reliability of HRV estimates were poor, but relative reliability estimates were often acceptable (≥0.70). Our findings illustrate how measurement consistency of cardiac autonomic modulation estimates are altered during heat stress, and we demonstrate the possible implications on research design and data interpretation.


Asunto(s)
Sistema Nervioso Autónomo , Calefacción , Adulto , Barorreflejo/fisiología , Presión Sanguínea , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
10.
Exp Physiol ; 106(8): 1671-1678, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34143517

RESUMEN

NEW FINDINGS: What is the central question of this study? Are regional differences in nitric oxide (NO)-dependent cutaneous vasodilatation during local skin heating present in young adults? What is the main finding and its importance? NO-dependent cutaneous vasodilatation varied across the body. The abdomen demonstrated larger NO contributions, while the chest demonstrated smaller NO contributions, compared to other regions. This exploratory work is an important first step in characterizing regional heterogeneity of cutaneous microvascular control across the torso and limbs. Equally, it serves to generate hypotheses for future studies examining regional cutaneous microvascular control in ageing and disease. ABSTRACT: Regional variations in cutaneous vasodilatation during local skin heating exist across the body. While nitric oxide (NO) is a well-known modulator of this response, the extent of regional differences in NO-dependent cutaneous vasodilatation during local skin heating remains uncertain. In 16 habitually active young adults (8 females; 25 ± 5 years), cutaneous vascular conductance, normalized to maximum vasodilatation (% CVCmax ), was assessed at the upper chest, abdomen, dorsal forearm, thigh and lateral calf during local skin heating. Across all regions, local skin temperatures were simultaneously increased from 33 to 42°C (1°C per 10 s), and held until a stable heating plateau was achieved (∼40 min). Next, with local skin temperature maintained at 42°C, 20 mM of NG -nitro-l-arginine methyl ester (l-NAME) was continuously infused at each site until a stable l-NAME plateau was achieved (∼40 min). The difference between heating and l-NAME plateaus was identified as the NO contribution for each region. There was no evidence for region-specific responses at baseline (P = 0.561), the heating plateau (P = 0.351) or l-NAME plateau (P = 0.082), but there was for the NO contribution (P = 0.048). Overall, point estimates for between-region differences in the NO contribution varied across the body from 0 to 19% CVCmax . The greatest effects were observed for the abdomen, wherein the NO contribution was consistently greater than for the other regions (range: 9-19% CVCmax ). The chest was consistently lower than the other regions (range: 7-19% CVCmax ). The smallest effects were observed between limb regions (range: 0-2% CVCmax ). These findings advance our understanding of the mechanisms influencing regional variations in the cutaneous vasodilator response to local skin heating in young adults.


Asunto(s)
Óxido Nítrico , Vasodilatación , Femenino , Calefacción , Humanos , Microdiálisis , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/fisiología , Flujo Sanguíneo Regional , Piel/irrigación sanguínea , Fenómenos Fisiológicos de la Piel , Vasodilatación/fisiología , Adulto Joven
11.
Exp Physiol ; 106(3): 615-633, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33230911

RESUMEN

The ventilated capsule technique is widely used to measure time-dependent changes in sweating in humans. However, evaluations of its reliability (consistency) have been restricted to the forearm, despite extensive regional heterogeneity in the sweating response. Given the importance of such information for experimental design, statistical analysis and interpretation, we determined the reliability of local sweat rate at nine sites during whole-body passive (resting) heating. On three separate occasions, a water-perfused suit was used to increase and clamp oesophageal temperature 0.6, 1.2 and 1.8°C above baseline in 14 young men [24 (SD 5) years of age], while sweat rate was measured at the forehead, chest, abdomen, biceps, forearm, hand, quadriceps, calf and foot using ventilated capsules (3.8 cm2 ). Absolute and relative reliability were determined via the coefficient of variation (CV) and intraclass correlation coefficient (ICC), respectively. At low heat strain (0.6°C), almost all sites had acceptable relative reliability (ICC ≥ 0.70) and moderate absolute reliability (CV < 25%). At moderate heat strain (1.2°C), only the abdomen, hand, quadriceps and foot had acceptable relative reliability, whereas the forehead, abdomen, forearm, hand and quadriceps had moderate absolute reliability. At high heat strain (1.8°C), relative reliability was acceptable at the abdomen, quadriceps, calf and foot, whereas the chest, abdomen, forearm, hand, quadriceps, calf and foot had moderate absolute reliability. Our findings indicate that the measurement site and level of heat strain impact the consistency of local sweat rate measured via the ventilated capsule technique, and we demonstrate the possible implications for research design and data interpretation.


Asunto(s)
Sudor , Sudoración , Antebrazo/fisiología , Calefacción , Calor , Humanos , Masculino , Reproducibilidad de los Resultados , Piel
12.
Exp Physiol ; 106(3): 634-652, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245579

RESUMEN

Laser-Doppler flowmetry (LDF) is commonly used to assess cutaneous vasodilatation responses, but its reliability (i.e. consistency) during whole-body passive heating is unknown. We therefore assessed the reliability of LDF-derived indices of cutaneous vasodilatation during incremental whole-body heating. Fourteen young men (age: 24 (SD 5) years) completed three identical trials, each separated by 1 week. During each trial, a water-perfused suit was used to raise and clamp oesophageal temperature at 0.6°C (low-heat strain; LHS) and 1.2°C (moderate-heat strain; MHS) above baseline. LDF-derived skin blood flow (SkBF) was measured at three dorsal mid-forearm sites, with local skin temperature clamped at 34°C. Data were expressed as absolute cutaneous vascular conductance (CVCabs ; SkBF/mean arterial pressure) and normalised to maximal conductance (%CVCmax ) achieved via simultaneous local skin heating to 44°C and increasing oesophageal temperature to 1.8°C above baseline. Between-day reliability was characterised as measurement consistency across trials, while within-day reliability was characterised as measurement consistency across adjacent skin sites during each trial. Between- and within-day absolute reliability (coefficient of variation) generally improved with increasing heat strain, changing from poor (>25%) at baseline, poor-to-moderate (15-34%) at LHS, and moderate (10-25%) at MHS. Generally, these estimates were more consistent when expressed as %CVCmax . Conversely, relative reliability was mostly acceptable (intraclass correlation coefficient ≥0.70) during LHS and when data were expressed as CVCabs . These findings indicate that the consistency of LDF-derived CVC estimates during heat stress depends on the level of heat strain and method of data expression, which should be considered when designing and interpreting experiments.


Asunto(s)
Antebrazo , Vasodilatación , Adulto , Calefacción , Calor , Humanos , Flujometría por Láser-Doppler , Masculino , Flujo Sanguíneo Regional/fisiología , Reproducibilidad de los Resultados , Piel/irrigación sanguínea , Adulto Joven
13.
J Therm Biol ; 95: 102790, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33454031

RESUMEN

With the increasing threat of climate change and the accompanying rise in the frequency and severity of extreme heat events, there are growing health concerns for heat-vulnerable elderly adults. Elderly adults are at increased risk of developing heat-related injuries, in part due to age-related declines in thermoregulatory and cellular function. Regarding the latter, the process of autophagy is activated as a cellular protective mechanism to counter heat-induced stress, but the extent that heat stress activates autophagy in elderly adults is not known. Further, the interplay between autophagy, the heat shock response (HSR), the acute inflammatory response, and apoptosis remains poorly understood in elderly adults. Therefore, the purpose of this study was to examine changes in autophagy, the HSR, inflammation, and apoptosis following increasing levels of ex vivo heat stress representative of physiologically relevant increases in body core temperatures (37-41 °C). Whole blood from 20 elderly adults (72 ± 4 years; 14 men, 6 women) was heated (via water immersion) to temperatures representative of normal resting conditions (normothermia; 37 °C), in addition to moderate and severe heat stress conditions (39, and 41 °C, respectively) for 90 min. Peripheral blood mononuclear cells (PBMC) were isolated and protein markers of autophagy, the HSR, acute inflammation, and apoptosis were examined. No significant increases in markers of autophagy or the HSR were observed following any temperature condition. However, an increase in acute inflammation was observed above baseline following moderate heat stress (39 °C), with further increases in inflammation and apoptosis observed during severe heat stress (41 °C). Our findings indicate that PBMCs from elderly adults do not exhibit increases in autophagy or the HSR following severe heat stress, potentially contributing to the elevated risk of cellular dysfunction seen in elderly adults during heat stress.


Asunto(s)
Envejecimiento/metabolismo , Autofagia , Respuesta al Choque Térmico , Leucocitos Mononucleares/metabolismo , Anciano , Apoptosis , Femenino , Humanos , Inflamación , Masculino
14.
PLoS Med ; 17(3): e1003053, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142510

RESUMEN

BACKGROUND: Fibre is promoted as part of a healthy dietary pattern and in diabetes management. We have considered the role of high-fibre diets on mortality and increasing fibre intake on glycaemic control and other cardiometabolic risk factors of adults with prediabetes or diabetes. METHODS AND FINDINGS: We conducted a systematic review of published literature to identify prospective studies or controlled trials that have examined the effects of a higher fibre intake without additional dietary or other lifestyle modification in adults with prediabetes, gestational diabetes, type 1 diabetes, and type 2 diabetes. Meta-analyses were undertaken to determine the effects of higher fibre intake on all-cause and cardiovascular mortality and increasing fibre intake on glycaemic control and a range of cardiometabolic risk factors. For trials, meta regression analyses identified further variables that influenced the pooled findings. Dose response testing was undertaken; Grading of Recommendations Assessment, Development and Evaluation (GRADE) protocols were followed to assess the quality of evidence. Two multicountry cohorts of 8,300 adults with type 1 or type 2 diabetes followed on average for 8.8 years and 42 trials including 1,789 adults with prediabetes, type 1, or type 2 diabetes were identified. Prospective cohort data indicate an absolute reduction of 14 fewer deaths (95% confidence interval (CI) 4-19) per 1,000 participants over the study duration, when comparing a daily dietary fibre intake of 35 g with the average intake of 19 g, with a clear dose response relationship apparent. Increased fibre intakes reduced glycated haemoglobin (HbA1c; mean difference [MD] -2.00 mmol/mol, 95% CI -3.30 to -0.71 from 33 trials), fasting plasma glucose (MD -0.56 mmol/L, 95% CI -0.73 to -0.38 from 34 trials), insulin (standardised mean difference [SMD] -2.03, 95% CI -2.92 to -1.13 from 19 trials), homeostatic model assessment of insulin resistance (HOMA IR; MD -1.24 mg/dL, 95% CI -1.72 to -0.76 from 9 trials), total cholesterol (MD -0.34 mmol/L, 95% CI -0.46 to -0.22 from 27 trials), low-density lipoprotein (LDL) cholesterol (MD -0.17 mmol/L, 95% CI -0.27 to -0.08 from 21 trials), triglycerides (MD -0.16 mmol/L, 95% CI -0.23 to -0.09 from 28 trials), body weight (MD -0.56 kg, 95% CI -0.98 to -0.13 from 18 trials), Body Mass Index (BMI; MD -0.36, 95% CI -0·55 to -0·16 from 14 trials), and C-reactive protein (SMD -2.80, 95% CI -4.52 to -1.09 from 7 trials) when compared with lower fibre diets. All trial analyses were subject to high heterogeneity. Key variables beyond increasing fibre intake were the fibre intake at baseline, the global region where the trials were conducted, and participant inclusion criteria other than diabetes type. Potential limitations were the lack of prospective cohort data in non-European countries and the lack of long-term (12 months or greater) controlled trials of increasing fibre intakes in adults with diabetes. CONCLUSIONS: Higher-fibre diets are an important component of diabetes management, resulting in improvements in measures of glycaemic control, blood lipids, body weight, and inflammation, as well as a reduction in premature mortality. These benefits were not confined to any fibre type or to any type of diabetes and were apparent across the range of intakes, although greater improvements in glycaemic control were observed for those moving from low to moderate or high intakes. Based on these findings, increasing daily fibre intake by 15 g or to 35 g might be a reasonable target that would be expected to reduce risk of premature mortality in adults with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 2/dietoterapia , Dieta para Diabéticos , Dieta Saludable , Fibras de la Dieta/administración & dosificación , Valor Nutritivo , Conducta de Reducción del Riesgo , Granos Enteros , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/mortalidad , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/mortalidad , Dieta para Diabéticos/efectos adversos , Dieta para Diabéticos/mortalidad , Dieta Saludable/efectos adversos , Dieta Saludable/mortalidad , Fibras de la Dieta/efectos adversos , Humanos , Factores Protectores , Ingesta Diaria Recomendada , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Granos Enteros/efectos adversos
15.
Exp Physiol ; 105(12): 2099-2109, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058304

RESUMEN

NEW FINDINGS: What is the central question of this study? How does resistance exercise affect peripheral haemodynamics in the active and inactive limb? What is the main finding and its importance? Preliminary data indicate that resistance exercise increases flow and shear rate in the active limb transiently. The same exercise has minimal, short-lasting influence on peripheral haemodynamics in the inactive limb, but further research is required to elaborate on resistance exercise-mediated changes in vascular function in active and inactive limbs. ABSTRACT: Current evidence indicates that to achieve maximum health benefits, regular resistance exercise should be a key component of structured physical activity. Several studies have revealed that regular resistance exercise may be associated with impaired vascular function, although this finding is inconsistent. Proposed explanations for impairment include substantial increases in blood pressure and increased retrograde blood flow in active limbs promoted by resistance exercise. However, few studies have examined the acute haemodynamics of resistance exercise in active - and even fewer in inactive - limbs. The purpose of this study was to characterise the haemodynamic responses in peripheral arteries in active and inactive limbs in response to resistance exercise using upper and lower limbs. Ten participants (five male, five female) familiar with resistance training performed three sets of 10 isotonic repetitions of right-sided bicep curls or knee extensions on separate days. Blood flow, shear rate and muscle oxygenation in the active and inactive limb, and blood pressure were measured before and for 3 min after each set. Blood flow increased in response to resistance exercise in the active limb (∼8-fold and ∼6-fold for the upper and lower limb respectively), with concurrent significant increases in mean and antegrade shear rate. In the inactive limb, blood flow more than doubled for both upper and lower limb exercise, transiently, with no significant change in retrograde shear rate. These acute blood flow profiles following resistance exercise are not indicative of long-term vessel impairment based on current understanding of blood flow and shear stress patterns.


Asunto(s)
Ejercicio Físico/fisiología , Extremidades/fisiología , Flujo Sanguíneo Regional/fisiología , Adaptación Fisiológica/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Arteria Braquial/fisiología , Endotelio Vascular/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Estrés Mecánico , Vasodilatación/fisiología , Adulto Joven
16.
Exp Physiol ; 105(9): 1491-1499, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32592411

RESUMEN

NEW FINDINGS: What is the central question of this study? Repeated heat exposure during the summer months can enhance heat loss in humans (seasonal heat acclimatisation), but does the magnitude of that enhancement differ between young and older adults when assessed during passive heat exposure? What is the main finding and its importance? While seasonal heat acclimatisation enhanced evaporative heat loss (i.e. sweating) in both young and older adults, those improvements led to a greater reduction in body heat storage in older adults. These outcomes indicate that heat acclimatisation may confer greater thermoregulatory benefits with increasing age. ABSTRACT: Repeated heat exposure throughout summer can enhance heat loss in humans (seasonal heat acclimatisation), although the effect of ageing on those improvements remains unclear. We therefore sought to assess thermoregulatory function in young and older adults during environmental heat exposure prior to and following seasonal heat acclimatisation, hypothesizing that the magnitude of adaptation would be greater in older relative to young adults. To achieve this, 14 young (19-27 years) and 10 older adults (55-72 years), who resided in a temperate humid-continental climate, completed a 3 h resting heat exposure (44°C, ∼30% relative humidity) in the winter-spring months as part of a larger investigation (pre-acclimatisation), before being re-evaluated using the same heat stress test following the summer months (post-acclimatisation). Whole-body dry and evaporative heat exchange, and metabolic rate were measured throughout using direct and indirect calorimetry (respectively), and used to quantify body heat storage (metabolic rate + dry heat gain - evaporative heat loss). Evaporative heat loss increased in both groups following acclimatisation, but those improvements led to a decrease in body heat storage in older (mean difference (95% CI); 213 (295, 131) kJ; P < 0.001), but not young adults (-25 (-94, 44) kJ; P = 0.458). Thus, body heat storage was greater in older compared to young adults before (222 (123, 314) kJ; P < 0.001), but not following acclimatisation (34 (-55, 123) kJ; P = 0.433). Although there is a need for larger and more controlled confirmatory studies, our findings indicate that seasonal heat acclimatisation may induce greater thermoregulatory adaptation in older compared to young adults.


Asunto(s)
Aclimatación , Factores de Edad , Regulación de la Temperatura Corporal , Calor , Adulto , Anciano , Metabolismo Basal , Calorimetría Indirecta , Ejercicio Físico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estaciones del Año , Sudoración , Adulto Joven
17.
Am J Physiol Heart Circ Physiol ; 316(6): H1495-H1506, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31002283

RESUMEN

Peripheral arterial disease (PAD) is characterized by lower limb atherosclerosis impairing blood supply and causing walking-induced leg pain or claudication. Adherence to traditional exercise training programs is poor due to these symptoms despite exercise being a mainstay of conservative treatment. Heat therapy improves many cardiovascular health outcomes, so this study tested if this was a viable alternative cardiovascular therapy for PAD patients. Volunteers with PAD were randomized to 12 wk of heat (n = 11; mean age 76 ± 8 yr, BMI 28.7 ± 3.5 kg/m2, 4 females) or exercise (n = 11; 74 ± 10 yr, 28.5 ± 6.8 kg/m2, 3 females). Heat involved spa bathing at ∼39°C, 3-5 days/wk for ≤30 min, followed by ≤30 min of callisthenics. Exercise involved ≤90 min of supervised walking and gym-based exercise, 1-2 days/wk. Following the interventions, total walking distance during a 6-min walk test increased (from ∼350 m) by 41 m (95% CI: [13, 69], P = 0.006) regardless of group, and pain-free walking distance increased (from ∼170 m) by 43 m ([22, 63], P < 0.001). Systolic blood pressure was reduced more following heat (-7 mmHg, [-4, -10], P < 0.001) than following exercise (-3 mmHg, [0, -6], P = 0.078), and diastolic and mean arterial pressure decreased by 4 mmHg in both groups (P = 0.002). There were no significant changes in blood volume, ankle-brachial index, or measures of vascular health. There were no differences in the improvement in functional or blood pressure outcomes between heat and exercise in individuals with PAD. NEW & NOTEWORTHY Heat therapy via hot-water immersion and supervised exercise both improved walking distance and resting blood pressure in peripheral arterial disease (PAD) patients over 12 wk. Adherence to heat therapy was excellent, and the heat intervention was well tolerated. The results of the current study indicate that heat therapy can improve functional ability and has potential as an effective cardiovascular conditioning tool for individuals with PAD.


Asunto(s)
Terapia por Ejercicio , Calor , Hidroterapia , Enfermedad Arterial Periférica/terapia , Anciano , Anciano de 80 o más Años , Presión Sanguínea , Tolerancia al Ejercicio , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nueva Zelanda , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/fisiopatología , Calidad de Vida , Recuperación de la Función , Factores de Tiempo , Resultado del Tratamiento , Caminata
18.
Environ Health Perspect ; 132(2): 27003, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38329752

RESUMEN

BACKGROUND: Health agencies recommend that homes of heat-vulnerable occupants (e.g., older adults) be maintained below 24-28°C to prevent heat-related mortality and morbidity. However, there is limited experimental evidence to support these recommendations. OBJECTIVE: To aid in the development of evidence-based guidance on safe indoor temperatures for temperate continental climates, we evaluated surrogate physiological outcomes linked with heat-related mortality and morbidity in older adults during simulated indoor overheating. METHODS: Sixteen older adults [six women; median age: 72 y, interquartile range (IQR): 70-73 y; body mass index: 24.6 (IQR: 22.1-27.0) kg/m2] from the Ottawa, Ontario, Canada, region (warm summer continental climate) completed four randomized, 8-h exposures to conditions experienced indoors during hot weather in continental climates (e.g., Ontario, Canada; 64 participant exposures). Ambient conditions simulated an air-conditioned environment (22°C; control), proposed indoor temperature upper limits (26°C), and temperatures experienced in homes without air-conditioning (31°C and 36°C). Core temperature (rectal) was monitored as the primary outcome; based on previous recommendations, between-condition differences >0.3°C were considered clinically meaningful. RESULTS: Compared with 22°C, core temperature was elevated to a meaningful extent in 31°C [+0.7°C; 95% confidence interval (CI): 0.5, 0.8] and 36°C (+0.9°C; 95% CI: 0.8, 1.1), but not 26°C (+0.2°C, 95% CI: 0.0, 0.3). Increasing ambient temperatures were also associated with elevated heart rate and reduced arterial blood pressure and heart rate variability at rest, as well as progressive impairments in cardiac and blood pressure responses to standing from supine. DISCUSSION: Core temperature and cardiovascular strain were not appreciably altered following 8-h exposure to 26°C but increased progressively in conditions above this threshold. These data support proposals for the establishment of a 26°C indoor temperature upper limit for protecting vulnerable occupants residing in temperate continental climates from indoor overheating. https://doi.org/10.1289/EHP13159.


Asunto(s)
Sistema Cardiovascular , Corazón , Anciano , Femenino , Humanos , Estudios Cruzados , Ontario , Temperatura , Masculino
19.
Appl Physiol Nutr Metab ; 49(9): 1252-1270, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830263

RESUMEN

Older adults are at elevated risk of heat-related mortality due to age-associated declines in thermoregulatory and cardiovascular function. However, the inter-individual factors that exacerbate physiological heat strain during heat exposure remain unclear, making it challenging to identify more heat-vulnerable subgroups. We therefore explored factors contributing to inter-individual variability in physiological responses of older adults exposed to simulated hot weather. Thirty-seven older adults (61-80 years, 16 females) rested for 8 h in 31 and 36 °C (45% relative humidity). Core (rectal) temperature, heart rate (HR), HR variability, mean arterial pressure (MAP), and cardiac autonomic responses to standing were measured at baseline and end-exposure. Bootstrapped least absolute shrinkage and selection operator regression was used to evaluate whether variation in these responses was related to type 2 diabetes (T2D, n = 10), hypertension (n = 18), age, sex, body morphology, habitual physical activity levels, and/or heat-acclimatization. T2D was identified as a predictor of end-exposure HR (with vs. without: 13 beats/min (bootstrap 95% confidence interval: 6, 23)), seated MAP (-7 mmHg (-18, 1)), and the systolic pressure response to standing (20 mmHg (4, 36)). HR was also influenced by sex (female vs. male: 8 beats/min (1, 16)). No other predictors were identified. The inter-individual factors explored did not meaningfully contribute to the variation in body temperature responses in older adults exposed to simulated indoor overheating. By contrast, cardiovascular responses were exacerbated in females and individuals with T2D. These findings improve understanding of how inter-individual differences contribute to heat-induced physiological strain in older persons.


Asunto(s)
Frecuencia Cardíaca , Calor , Humanos , Femenino , Masculino , Anciano , Frecuencia Cardíaca/fisiología , Anciano de 80 o más Años , Persona de Mediana Edad , Calor/efectos adversos , Diabetes Mellitus Tipo 2/fisiopatología , Presión Sanguínea/fisiología , Trastornos de Estrés por Calor/fisiopatología , Temperatura Corporal/fisiología , Hipertensión/fisiopatología , Regulación de la Temperatura Corporal/fisiología , Respuesta al Choque Térmico/fisiología
20.
Appl Physiol Nutr Metab ; 49(6): 855-867, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394645

RESUMEN

To protect vulnerable populations during heat waves, public health agencies recommend maintaining indoor air temperature below ∼24-28 °C. While we recently demonstrated that maintaining indoor temperatures ≤26 °C mitigates the development of hyperthermia and cardiovascular strain in older adults, the cellular consequences of prolonged indoor heat stress are poorly understood. We therefore evaluated the cellular stress response in 16 adults (six females) aged 66-78 years during 8 h rest in ambient conditions simulating homes maintained at 22 °C (control) and 26 °C (indoor temperature upper limit proposed by health agencies), as well as non-air-conditioned domiciles during hot weather and heat waves (31 and 36 °C, respectively; all 45% relative humidity). Western blot analysis was used to assess changes in proteins associated with the cellular stress response (autophagy, apoptosis, acute inflammation, and heat shock proteins) in peripheral blood mononuclear cells harvested prior to and following exposure. Following 8 h exposure, no cellular stress response-related proteins differed significantly between the 26 and 22 °C conditions (all, P ≥ 0.056). By contrast, autophagy-related proteins were elevated following exposure to 31 °C (p62: 1.5-fold; P = 0.003) and 36 °C (LC3-II, LC3-II/I, p62; all ≥2.0-fold; P ≤ 0.002) compared to 22 °C. These responses were accompanied by elevations in apoptotic signaling in the 31 and 36 °C conditions (cleaved-caspase-3: 1.8-fold and 3.7-fold, respectively; P ≤ 0.002). Furthermore, HSP90 was significantly reduced in the 36 °C compared to 22 °C condition (0.7-fold; P = 0.014). Our findings show that older adults experience considerable cellular stress during prolonged exposure to elevated ambient temperatures and support recommendations to maintain indoor temperatures ≤26 °C to prevent physiological strain in heat-vulnerable persons.


Asunto(s)
Autofagia , Calor , Humanos , Anciano , Autofagia/fisiología , Femenino , Masculino , Leucocitos Mononucleares/metabolismo , Apoptosis , Respuesta al Choque Térmico/fisiología , Proteínas de Choque Térmico/metabolismo , Vivienda , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA