Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 46(17): 4164-4167, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469965

RESUMEN

Polarization conversion is useful for studies of chiral structures in biology and chemistry, and for polarization diversity in communications. It is conventionally realized with wave plates, which, however, present challenges due to limited material availability, as well as narrow bandwidth and low efficiency at terahertz frequencies. To enhance bandwidth and efficiency, the concept of the Huygens' metasurface is adopted here for a transmissive half-wave plate. The half-wave metasurface is designed following the optimal frequency-independent circuit parameters provided by a broadband semi-analytical approach. Simulation results of an optimal design suggest that a 15-dB extinction ratio can be sustained from 219 GHz to 334 GHz, corresponding to a fractional bandwidth of 41.6%. The measured results indicate that the fabricated structure enables a 15-dB extinction ratio from 220 GHz to 303 GHz, with a cross-polarization transmission efficiency above 76.7% for both linear and circular polarizations. This half-wave metasurface design can be readily integrated into compact terahertz systems for diverse applications.

2.
Opt Lett ; 46(18): 4640, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525069

RESUMEN

This publisher's note contains corrections to Opt. Lett.46, 4164 (2021)OPLEDP0146-959210.1364/OL.431285.

3.
Opt Express ; 26(11): 14392-14406, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877478

RESUMEN

Polarization conversion of terahertz waves is important for applications in imaging and communications. Conventional wave plates used for polarization conversion are inherently bulky and operate at discrete wavelengths. As a substitute, we employ reflective metasurfaces composed of subwavelength resonators to obtain similar functionality but with enhanced performance. More specifically, we demonstrate low-order dielectric resonators in place of commonly used planar metallic resonators to achieve high radiation efficiencies. As a demonstration of the concept, we present firstly, a quarter-wave mirror that converts 45° incident linearly polarized waves into circularly polarized waves. Next, we present a half-wave mirror that preserves the handedness of circularly polarized waves upon reflection, and in addition, rotates linearly polarized waves by 90° upon reflection. Both metasurfaces operate with high efficiency over a measurable relative bandwidth of 49% for the quarter-wave mirror and 53% for the half-wave mirror. This broadband and high efficiency capabilities of our metasurfaces will allow to leverage maximum benefits from a vast terahertz bandwidth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA