Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 13883, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230580

RESUMEN

The role of leukocyte inflammatory markers and toll like receptors (TLRs)2/4 in pathologies associated with elevated resting heart rate (RHR) levels in healthy obese (HO) individuals is not well elucidated. Herein, we investigated the relationship of RHR with expression of leukocyte-inflammatory markers and TLRs in HO individuals. 58-obese and 57-lean participants with no history of a major medical condition, were recruited in this study. In HO individuals, the elevated-RHR correlated positively with diastolic blood pressure, cholesterol, pro-inflammatory monocytes CD11b+CD11c+CD206- phenotype (r = 0.52, P = 0.0003) as well as with activated T cells CD8+HLA-DR+ phenotype (r = 0.27, P = 0.039). No association was found between RHR and the percentage of CD16+CD11b+ neutrophils. Interestingly, elevated RHR positively correlated with cells expressing TLR4 and TLR2 (CD14+TLR4+, r = 0.51, P ≤ 0.0001; and CD14+TLR2+, r = 0.42, P = 0.001). TLR4+ expressing cells also associated positively with the plasma concentrations of proinflammatory or vascular permeability/matrix modulatory markers including TNF-α (r = 0.36, P = 0.005), VEGF (r = 0.47, P = 0.0002), and MMP-9 (r = 0.53, P ≤ 0.0001). Multiple regression revealed that RHR is independently associated with CD14+TLR4+ monocytes and VEGF. We conclude that in HO individuals, increased CD14+TLR4+ monocytes and circulatory VEGF levels associated independently with RHR, implying that RHR monitoring could be used as a non-invasive clinical indicator to identify healthy obese individuals at an increased risk of developing inflammation and cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Frecuencia Cardíaca/fisiología , Inflamación/fisiopatología , Obesidad/fisiopatología , Descanso/fisiología , Adulto , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Leucocitos/patología , Modelos Lineales , Masculino , Monocitos/metabolismo , Obesidad/sangre , Fenotipo , Factores de Riesgo
2.
Cells ; 9(8)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806763

RESUMEN

Repetitive intermittent hyperglycemia (RIH) is an independent risk factor for complications associated with type-2 diabetes (T2D). Glucose fluctuations commonly occur in T2D patients with poor glycemic control or following intensive therapy. Reducing blood glucose as well as glucose fluctuations is critical to the control of T2D and its macro-/microvascular complications. The interferon regulatory factor (IRF)-5 located downstream of the nutrient sensor toll-like receptor (TLR)-4, is emerging as a key metabolic regulator. It remains unclear how glucose fluctuations may alter the IRF5/TLR4 expression and inflammatory responses in monocytes/macrophages. To investigate this, first, we determined IRF5 gene expression by real-time qRT-PCR in the white adipose tissue samples from 39 T2D and 48 nondiabetic individuals. Next, we cultured THP-1 macrophages in hypo- and hyperglycemic conditions and compared, at the protein and transcription levels, the expressions of IRF5, TLR4, and M1/M2 polarization profile and inflammatory markers against control (normoglycemia). Protein expression was assessed using flow cytometry, ELISA, Western blotting, and/or confocal microscopy. IRF5 silencing was achieved by small interfering RNA (siRNA) transfection. The data show that adipose IRF5 gene expression was higher in T2D than nondiabetic counterparts (P = 0.006), which correlated with glycated hemoglobin (HbA1c) (r = 0.47/P < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.23/P = 0.03), tumor necrosis factor (TNF)-α (r = 0.56/P < 0.0001), interleukin (IL)-1ß (r = 0.40/P = 0.0009), and C-C motif chemokine receptor (CCR)-2 (r = 0.49/P < 0.001) expression. IRF5 expression in macrophages was induced/upregulated (P < 0.05) by hypoglycemia (3 mM/L), persistent hyperglycemia (15 mM/L-25 mM/L), and RIH/glucose fluctuations (3-15 mM/L) as compared to normoglycemia (5 mM/L). RIH/glucose fluctuations also induced M1 polarization and an inflammatory profile (CD11c, IL-1ß, TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1) in macrophages. RIH/glucose fluctuations also drove the expression of matrix metalloproteinase (MMP)-9 (P < 0.001), which is a known marker for cardiovascular complication in T2D patients. Notably, all these changes were counteracted by IRF5 silencing in macrophages. In conclusion, RIH/glucose fluctuations promote the M1 polarization and inflammatory responses in macrophages via the mechanism involving TLR4-IRF5 pathway, which may have significance for metabolic inflammation.


Asunto(s)
Polaridad Celular/genética , Diabetes Mellitus Tipo 2/sangre , Hiperglucemia/metabolismo , Factores Reguladores del Interferón/metabolismo , Macrófagos/metabolismo , Transducción de Señal/genética , Receptor Toll-Like 4/metabolismo , Tejido Adiposo Blanco/metabolismo , Adulto , Estudios de Cohortes , Diabetes Mellitus Tipo 2/genética , Femenino , Expresión Génica , Humanos , Inflamación/metabolismo , Factores Reguladores del Interferón/genética , Masculino , Persona de Mediana Edad , ARN Interferente Pequeño/genética , Células THP-1 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA