Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686107

RESUMEN

Kidney progenitor cells, although rare and dispersed, play a key role in the repair of renal tubules after acute kidney damage. However, understanding these cells has been challenging due to the limited access to primary renal tissues and the absence of immortalized cells to model kidney progenitors. Previously, our laboratory utilized the renal proximal tubular epithelial cell line, RPTEC/TERT1, and the flow cytometry technique to sort and establish a kidney progenitor cell model called Human Renal Tubular Precursor TERT (HRTPT) which expresses CD133 and CD24 and exhibits the characteristics of kidney progenitors, such as self-renewal capacity and multi-potential differentiation. In addition, a separate cell line was established, named Human Renal Epithelial Cell 24 TERT (HREC24T), which lacks CD133 expression and shows no progenitor features. To further characterize HRTPT CD133+CD24+ progenitor cells, we performed proteomic profiling which showed high proteasomal expression in HRTPT kidney progenitor cells. RT-qPCR, Western blot, and flow cytometry analysis showed that HRTPT cells possess higher proteasomal expression and activity compared to HREC24T non-progenitor cells. Importantly, inhibition of the proteasomes with bortezomib reduced the expression of progenitor markers and obliterated the potential for self-renewal and differentiation of HRTPT progenitor cells. In conclusion, proteasomes are critical in preserving progenitor markers expression and self-renewal capacity in HRTPT kidney progenitors.


Asunto(s)
Riñón , Proteómica , Humanos , Antígeno CD24 , Citoplasma , Túbulos Renales , Complejo de la Endopetidasa Proteasomal , Antígeno AC133
2.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298099

RESUMEN

Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.


Asunto(s)
Arsenitos , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Arsenitos/farmacología , Neoplasias de la Vejiga Urinaria/metabolismo , Carcinoma de Células Transicionales/patología , Cisplatino , Antígenos de Diferenciación , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
3.
Cell Physiol Biochem ; 53(6): 999-1014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31838790

RESUMEN

BACKGROUND/AIMS: Schlafen12 (SLFN12) promotes human intestinal and prostatic epithelial differentiation. We sought to determine whether SLFN12 reduces triple-negative breast cancer (TNBC) aggressiveness. METHODS: We validated bioinformatics analyses of publicly available databases by staining human TNBC. After virally overexpressing or siRNA-reducing SLFN12 in TNBC cell lines, we measured proliferation by CCK-8 assay, invasion into basement-membrane-coated pores, mRNA by q-RT-PCR and protein by Western blotting. Flow cytometry assessed proliferation and stem cell marker expression, and sorted CD44+/CD24- cells. Stemness was also assessed by mammosphere formation, and translation by click-it-AHA chemistry. RESULTS: SLFN12 expression was lower in TNBC tumors and correlated with survival. SLFN12 overexpression reduced TNBC MDA-MB-231, BT549, and Hs578T proliferation. In MDA-MB-231 cells, AdSLFN12 reduced invasion, promoted cell cycle arrest, increased E-cadherin promoter activity, mRNA, and protein, and reduced vimentin expression and protein. SLFN12 knockdown increased vimentin. AdSLFN12 reduced the proportion of MDA-MB-231 CD44+CD24- cells, with parallel differentiation changes. SLFN12 overexpression reduced MDA-MB-231 mammosphere formation. SLFN12 overexpression decreased ZEB1 and Slug protein despite increased ZEB1 and Slug mRNA in all three lines. SLFN12 overexpression accelerated MDA-MB-231 ZEB1 proteasomal degradation and slowed ZEB1 translation. SLFN12 knockdown increased ZEB1 protein. Coexpressing ZEB1 attenuated the SLFN12 effect on E-cadherin mRNA and proliferation in all three lines. CONCLUSION: SLFN12 may reduce TNBC aggressiveness and improve survival in part by a post-transcriptional decrease in ZEB1 that promotes TNBC cancer stem cell differentiation.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neoplasias de la Mama Triple Negativas/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
4.
Cell Physiol Biochem ; 48(3): 1274-1290, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30045019

RESUMEN

BACKGROUND/AIMS: Human enterocytic differentiation is altered during development, fasting, adaptation, and bariatric surgery, but its intracellular control remains unclear. We hypothesized that Schlafen 12 (SLFN12) regulates enterocyte differentiation. METHODS: We used laser capture dissection of epithelium, qRT-PCR, and immunohistochemistry to evaluate SLFN12 expression in biopsies of control and fasting human duodenal mucosa, and viral overexpression and siRNA to trace the SLFN12 pathway in human Caco-2 and HIEC6 intestinal epithelial cells. RESULTS: Fasting human duodenal mucosa expressed less SLFN12 mRNA and protein, accompanied by decreases in enterocytic markers like sucrase-isomaltase. SLFN12 overexpression increased Caco-2 sucrase-isomaltase promoter activity, mRNA, and protein independently of proliferation, and activated the SLFN12 putative promoter. SLFN12 coprecipitated Serpin B12 (SERPB12). An inactivating SLFN12 point mutation prevented both SERPB12 binding and sucrase-isomaltase induction. SERPB12 overexpression also induced sucrase-isomaltase, while reducing SERPB12 prevented the SLFN12 effect on sucrase-isomaltase. Sucrase-isomaltase induction by both SLFN12 and SERPB12 was attenuated by reducing UCHL5 or USP14, and blocked by reducing both. SERPB12 stimulated USP14 but not UCHL5 activity. SERPB12 coprecipitated USP14 but not UCHL5. Moreover, SLFN12 increased protein levels of the sucrase-isomaltase-promoter-binding transcription factor cdx2 without altering Cdx2 mRNA. This was prevented by reducing UCHL5 and USP14. We further validated this pathway in vitro and in vivo. SLFN12 or SERPB12 overexpression induced sucrase-isomaltase in human non-malignant HIEC-6 enterocytes. CONCLUSIONS: SLFN12 regulates human enterocytic differentiation by a pathway involving SERPB12, the deubiquitylases, and Cdx2. This pathway may be targeted to manipulate human enterocytic differentiation in mucosal atrophy, short gut or obesity.


Asunto(s)
Diferenciación Celular , Enzimas Desubicuitinizantes/metabolismo , Enterocitos/citología , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Serpinas/metabolismo , Células CACO-2 , Células Cultivadas , Enterocitos/metabolismo , Ayuno , Humanos
5.
Biochem Biophys Res Commun ; 502(2): 243-249, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29803674

RESUMEN

Tanycytes are a specialized ependymal lining of brain ventricles with exceptional features of having long basal processes and junctional complexes between cell bodies. These tanycytes are present at the regions of circumventricular organs (CVOs) which possess common morphological and functional features enabling them to be described as the brain windows where the barrier systems have special properties. Previous studies detailed seven of these CVOs but little information is available regarding another putative site at the rostral part of the median sulcus of the 4th ventricle, or the sulcus medianus organum (SMO). Here we performed a pilot immunohistochemical study to support earlier observations suggesting the SMO as a novel CVO. We labeled rat brain with ZO1, vimentin, pan-cadherin and angiotensin II type 1 receptors markers which showed a morphologically distinct population of cells at the region of the SMO similar to tanycytes present in the median eminence, a known CVO. These cells had basal processes reaching the deeply seated blood vessels while the caudal part of the median sulcus did not show similar long cellular extensions. We concluded that tanycyte-like cells are present in the SMO in a pattern resembling that of other CVOs where the strategic location of the SMO is probably for signal integration between brainstem nuclei and the rostrally located neuronal centers.


Asunto(s)
Cadherinas/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Cuarto Ventrículo/citología , Cuarto Ventrículo/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Vimentina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Inmunohistoquímica , Masculino , Microscopía Confocal , Ratas , Ratas Sprague-Dawley
6.
Neurosurg Focus ; 43(5): E14, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29088959

RESUMEN

OBJECTIVE Little is known regarding the natural history of posttraumatic vasospasm. The authors review the pathophysiology of posttraumatic vasospasm (PTV), its associated risk factors, the efficacy of the technologies used to detect PTV, and the management/treatment options available today. METHODS The authors performed a systematic review in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using the following databases: PubMed, Google Scholar, and CENTRAL (the Cochrane Central Register of Controlled Trials). Outcome variables extracted from each study included epidemiology, pathophysiology, time course, predictors of PTV and delayed cerebral ischemia (DCI), optimal means of surveillance and evaluation of PTV, application of multimodality monitoring, modern management and treatment options, and patient outcomes after PTV. Study types were limited to retrospective chart reviews, database reviews, and prospective studies. RESULTS A total of 40 articles were included in the systematic review. In many cases of mild or moderate traumatic brain injury (TBI), imaging or ultrasonographic studies are not performed. The lack of widespread assessment makes finding the true overall incidence of PTV a difficult endeavor. The clinical consequences of PTV are important, given the morbidity that can result from it. DCI manifests as new-onset neurological deterioration that occurs beyond the timeframe of initial brain injury. While there are many techniques that attempt to diagnose cerebral vasospasm, digital subtraction angiography is the gold standard. Some predictors of PTV include SAH, intraventricular hemorrhage, low admission Glasgow Coma Scale (GCS) score (< 9), and young age (< 30 years). CONCLUSIONS Given these results, clinicians should suspect PTV in young patients presenting with intracranial hemorrhage (ICH), especially SAH and/or intraventricular hemorrhage, who present with a GCS score less than 9. Monitoring and regulation of CNS metabolism following TBI/ICH-induced vasospasm may play an important adjunct role to the primary prevention of vasospasm.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Hemorragias Intracraneales/complicaciones , Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/etiología , Isquemia Encefálica/complicaciones , Hemorragia Cerebral/complicaciones , Humanos , Vasoespasmo Intracraneal/complicaciones
7.
Cancers (Basel) ; 16(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38539513

RESUMEN

Bladder cancer (BC) is the eighth most common cause of cancer death in the United States of America. BC is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Genetically, MIBCs are categorized into the more aggressive basal subtype or less aggressive luminal subtype. All-trans retinoic acid (tretinoin), the ligand for the RAR-RXR retinoic acid receptor, is clinically used as a differentiation therapy in hematological malignancies. This study aims to determine the effects of retinoic acid on arsenite-transformed malignant urothelial cells (UROtsa As), serving as a model for basal muscle-invasive bladder cancer. We treated three independent isolates of arsenite-transformed malignant human urothelial UROtsa cells (UROtsa As) with tretinoin for 48 h. Cell viability, proliferation, and apoptosis were analyzed using crystal violet staining and flow cytometry. mRNA and protein level analyses were performed using RT-qPCR and the Simple Western™ platform, respectively. Tretinoin was found to reduce cell proliferation and urosphere formation, as well as decrease the expression of basal markers (KRT1, KRT5, KRT6, EGFR) and increase the expression of luminal differentiation markers (GATA3, FOXA1). Mechanistically, the antiproliferative effect of tretinoin was attributed to the downregulation of c-myc. Our results suggest that targeting the retinoic acid pathway can diminish the aggressive behavior of basal muscle-invasive urothelial cancer and may enhance patient survival.

8.
Cancers (Basel) ; 15(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36672349

RESUMEN

The Schlafen 12 (SLFN12) protein regulates triple-negative breast cancer (TNBC) growth, differentiation, and proliferation. SLFN12 mRNA expression strongly correlates with TNBC patient survival. We sought to explore SLFN12 overexpression effects on in vivo human TNBC tumor xenograft growth and performed RNA-seq on xenografts to investigate related SLFN12 pathways. Stable SLFN12 overexpression reduced tumorigenesis, increased tumor latency, and reduced tumor volume. RNA-seq showed that SLFN12 overexpressing xenografts had higher luminal markers levels, suggesting that TNBC cells switched from an undifferentiated basal phenotype to a more differentiated, less aggressive luminal phenotype. SLFN12-overexpressing xenografts increased less aggressive BC markers, HER2 receptors ERBB2 and EGFR expression, which are not detectable by immunostaining in TNBC. Two cancer progression pathways, the NAD signaling pathway and the superpathway of cholesterol biosynthesis, were downregulated with SLFN12 overexpression. RNA-seq identified gene signatures associated with SLFN12 overexpression. Higher gene signature levels indicated good survival when tested on four independent BC datasets. These signatures behaved differently in African Americans than in Caucasian Americans, indicating a possible biological difference between these races that could contribute to the worse survival observed in African Americans with BC. These results suggest an increased SLFN12 expression modulates TNBC aggressiveness through a gene signature that could offer new treatment targets.

9.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067362

RESUMEN

Triple-negative breast cancer (TNBC) has a poor prognosis and no targeted therapy for treatment. The Schlafen gene family, particularly SLFN12, critically mediates TNBC biology. Higher expression of SLFN12 correlates with decreased TNBC viability and increased chemosensitivity and patient survival, yet no treatment is known to upregulate SLFN12 in TNBC. We hypothesized that Interferon-α (IFN-α2) upregulates SLFN12 in TNBC, subsequently reducing cell viability. We utilized short hairpin adenovirus to knockout SLFN12 (AdvShSLFN12) in MDA-MB-231, Hs-578T, and BT-549 TNBC cells. Cells were treated with AdvShSLFN12 and IFN-α2. After treatment, TNBC cell viability, SLFN family mRNA, and protein expression were analyzed. Treating TNBC cells with IFN-α2 increased SLFN12 expression and reduced cell viability. However, when AdvShSLFN12 knocked down SLFN12 during IFN-α2 treatment, TNBC cell viability was still reduced. We, therefore, investigated the potential involvement of other SLFN members IFN-α2 effects on cell viability. IFN-α2 increased SLFN5, SLFN12-Like, and SLFN14 but not SLFN11 or SLFN13. During AdvShSLFN12 + IFN-α2 treatment, the expressions of SLFN5, SLFN12-Like, and SLFN14 further increased. However, when siRNA knocked down SLFN5, SLFN12-Like, and SLFN14, the IFN-α2 reduction in viability was blunted. Although the interpretation of these results may be limited by the potential interactions between different siRNAs, these data suggest a complex regulatory signaling cascade among SLFN family members. Targeting this cascade to manipulate SLFN levels may, in the future, offer the potential to manipulate the chemosensitivity of TNBC tumors.

10.
Cancer Genomics Proteomics ; 19(3): 328-338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35430566

RESUMEN

BACKGROUND/AIM: Schlafen 12 (SLFN12) expression correlates with survival in triple negative breast cancer (TNBC). SLFN12 slows TNBC proliferation and induces TNBC differentiation, but whether SLFN12 affects the tumoral response to chemotherapy or radiation is unknown. MATERIALS AND METHODS: We over-expressed SLFN12 in MDA-MB-231 cells using two different lentiviral vectors. We assessed viable cell numbers via crystal violet assay after treatment with carboplatin, paclitaxel, olaparib, zoledronic acid, camptothecin, or cesium irradiation. CHK1 and CHK2 phosphorylation was assessed by western blot and the effects of inhibiting CHK1/CHK2 by AZD7762 were examined. Key findings were confirmed in Hs578t and BT549 TNBC cells after adenoviral SLFN12 over-expression. RESULTS: SLFN12 over-expression increased TNBC sensitivity to radiation, carboplatin, paclitaxel, zoledronic acid, and camptothecin, but not to olaparib. SLFN12 over-expression decreased CHK1 and CHK2 phosphorylation after treatment with the DNA damaging agent camptothecin (CPT). The CHK1/CHK2 inhibitor diminished the significant cytotoxicity difference between over-expression and baseline SLFN12 levels in response to carboplatin. CONCLUSION: SLFN12 increases TNBC sensitivity to DNA-damaging agents at least in part by reducing CHK1/2 phosphorylation. This may contribute to improved survival in patients whose TNBC over-expresses SLFN12. Therefore, SLFN12 levels may be used to customize or predict radiotherapy and chemotherapy effects in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Camptotecina/farmacología , Camptotecina/uso terapéutico , Carboplatino/farmacología , Línea Celular Tumoral , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Humanos , Paclitaxel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico
11.
Cells ; 10(9)2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-34571887

RESUMEN

Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Animales , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Isoformas de Proteínas , Transducción de Señal
12.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987632

RESUMEN

Schlafen 12 (SLFN12) is an intermediate human Schlafen that induces differentiation in enterocytes, prostate, and breast cancer. We hypothesized that SLFN12 influences lung cancer biology. We investigated survival differences in high versus low SLFN12-expressing tumors in two databases. We then adenovirally overexpressed SLFN12 (AdSLFN12) in HCC827, H23, and H1975 cells to model lung adenocarcinoma (LUAD), and in H2170 and HTB-182 cells representing lung squamous cell carcinoma (LUSC). We analyzed proliferation using a colorimetric assay, mRNA expression by RT-qPCR, and protein by Western blot. To further explore the functional relevance of SLFN12, we correlated SLFN12 with seventeen functional oncogenic gene signatures in human tumors. Low tumoral SLFN12 expression predicted worse survival in LUAD patients, but not in LUSC. AdSLFN12 modulated expression of SCGB1A1, SFTPC, HOPX, CK-5, CDH1, and P63 in a complex fashion in these cells. AdSLFN12 reduced proliferation in all LUAD cell lines, but not in LUSC cells. SLFN12 expression inversely correlated with expression of a myc-associated gene signature in LUAD, but not LUSC tumors. SLFN12 overexpression reduced c-myc protein in LUAD cell lines but not in LUSC, by inhibiting c-myc translation. Our results suggest SLFN12 improves prognosis in LUAD in part via a c-myc-dependent slowing of proliferation.

13.
J Neurol Sci ; 390: 184-192, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29801883

RESUMEN

Elevated intracranial pressure (ICP) following brain injury contributes to poor outcomes for patients, primarily by reducing the caliber of cerebral vasculature, and thereby reducing cerebral blood flow. Careful monitoring of ICP is critical in these patients in order to determine prognosis, implement treatment when ICP becomes elevated, and to judge responsiveness to treatment. Currently, the gold standard for monitoring is invasive pressure transducers, usually an intraventricular monitor, which presents significant risk of infection and hemorrhage. These risks made discovering non-invasive methods for monitoring ICP and cerebral perfusion a priority for researchers. Herein we sought to review recent publications on novel minimally invasive multi-modality monitoring techniques that provide surrogate data on ICP, cerebral oxygenation, metabolism and blood flow. While limitations in various forms preclude them from supplanting the use of invasive monitors, these modalities represent useful screening tools within our armamentarium that may be invaluable when the risks of invasive monitoring outweigh the associated benefits.


Asunto(s)
Cuidados Críticos/métodos , Monitorización Neurofisiológica/métodos , Encéfalo/fisiopatología , Humanos
14.
J Neurol Sci ; 390: 44-51, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29801906

RESUMEN

Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (SAH) is an important cause of further morbidity and mortality after an already devastating condition. Though traditionally attributed to vasospasm of large capacitance arteries and the resulting down-stream disruption of cerebral blood flow, the pathogenesis of DCI has proven to be more complex with early brain injury, blood-brain barrier disruption, microthrombosis, cortical spreading depolarizations, and the failure of cerebral autoregulation as newly elucidated factors. Vasospasm is a known consequence of SAH. The standard of care includes close monitoring for neurological deterioration, most often with serial clinical examinations, transcranial Doppler ultrasonography, and vascular imaging (crucial for early detection of DCI and allows for prompt intervention). Nimodipine continues to remain an important pharmacological strategy to improve functional outcomes in patients with SAH at risk for developing vasospasm. The paradigm for first line therapy in patients with vasospasm of induced hypertension, hypervolemia, and hemodilution has recently been challenged. Current American Heart Association guidelines recommend targeting euvolemia and judicious use of the pharmacologically induced hypertension component. Symptomatic vasospasm patients who do not improve with this first line therapy require rescue intervention with mechanical or chemical angioplasty and optimization of cardiac output and hemoglobin levels. This can be escalated in a step-wise fashion to include adjunct treatments such as intrathecal administration of vasodilators and sympatholytic or thrombolytic therapies. This review provides a general overview of the treatment modalities for DCI with a focus on novel management strategies that show promising results for treating vasospasm to prevent DCI.


Asunto(s)
Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/etiología , Vasoespasmo Intracraneal/terapia , Resistencia a Medicamentos , Humanos , Hemorragia Subaracnoidea/terapia
15.
Oper Neurosurg (Hagerstown) ; 15(6): 624-633, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29584923

RESUMEN

Flow diverting devices (FDDs) have revolutionized the treatment of morphologically complex intracranial aneurysms such as wide-necked, giant, or fusiform aneurysms. Although FDDs are extremely effective, they carry a small yet significant risk of intraprocedural complications. As the implementation of these devices increases, the ability to predict and rapidly treat complications, especially those that are iatrogenic or intraprocedural in nature, is becoming increasingly more necessary.Our objective in this paper is to provide a descriptive summary of the various types of intraprocedural complications that may occur during FDDs deployment and how they may best be treated. A systematic and qualitative review of the literature was conducted using electronic databases MEDLINE and Google Scholar. Searches consisted of Boolean operators "AND" and "OR" for the following terms in different combinations: "aneurysm," "endovascular," "flow diverter," "intracranial," and "pipeline."A total of 94 papers were included in our analysis; approximately 87 of these papers dealt with periprocedural endovascular (mainly related to FDDs) complications and their treatment; 7 studies concerned background material. The main categories of periprocedural complications encountered during deployment of FDDs are failure of occlusion, parent vessel injury and/or rupture, spontaneous intraparenchymal hemorrhage, migration or malposition of the FDDs, thromboembolic or ischemic events, and side branch occlusionPeriprocedural complications occur mainly due to thromboembolic events or mechanical issues related to device deployment and placement. With increasing use and expanding versatility of FDDs, the understanding of these complications is vital in order to effectively manage such situations in a timely manner.


Asunto(s)
Procedimientos Endovasculares/efectos adversos , Aneurisma Intracraneal/cirugía , Complicaciones Intraoperatorias/terapia , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA