Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 139(30): 10232-10238, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27775320

RESUMEN

Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic-inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

2.
ACS Appl Mater Interfaces ; 8(11): 6859-68, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26915062

RESUMEN

Premature drug release is a common drawback in stimuli-responsive drug delivery systems (DDS), especially if it depends on internal triggers, which are hard to control, or a single external stimulus, which can only have one function. Thus, many DDS systems have been reported that combined different triggers; however, limited success has been established in fine-tuning the release process, mainly due to the poor bioavailability and complexity of the reported designs. This paper reports the design of a hybrid microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (sodium alginate, chitosan, and hyaluronic acid), iron oxide, and graphene oxide (GO). Electrostatic assembly of the oppositely charged polysaccharides and graphene sheets provided a robust structure in which to load drugs through pH control. The polysaccharide component ensured high biocompatibility, bioavailability, and tumor cells targeting. The alternative magnetic field and near-infrared laser triggerable Fe3O4@GO component provided for dual high-energy and high-penetration hyperthermia therapy. On-demand drug release from h-MC can be achieved by synchronizing these external triggers, making the release highly controllable. The synergistic effect of hyperthermia and chemotherapy was successfully confirmed in vitro and in vivo.


Asunto(s)
Compuestos Férricos , Grafito , Hipertermia Inducida/métodos , Neoplasias Experimentales/terapia , Animales , Cápsulas , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Compuestos Férricos/química , Compuestos Férricos/farmacocinética , Compuestos Férricos/farmacología , Grafito/química , Grafito/farmacocinética , Grafito/farmacología , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA