Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 21(1): 30-41, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819254

RESUMEN

NLRP3-inflammasome-driven inflammation is involved in the pathogenesis of a variety of diseases. Identification of endogenous inflammasome activators is essential for the development of new anti-inflammatory treatment strategies. Here, we identified that apolipoprotein C3 (ApoC3) activates the NLRP3 inflammasome in human monocytes by inducing an alternative NLRP3 inflammasome via caspase-8 and dimerization of Toll-like receptors 2 and 4. Alternative inflammasome activation in human monocytes is mediated by the Toll-like receptor adapter protein SCIMP. This triggers Lyn/Syk-dependent calcium entry and the production of reactive oxygen species, leading to activation of caspase-8. In humanized mouse models, ApoC3 activated human monocytes in vivo to impede endothelial regeneration and promote kidney injury in an NLRP3- and caspase-8-dependent manner. These data provide new insights into the regulation of the NLRP3 inflammasome and the pathophysiological role of triglyceride-rich lipoproteins containing ApoC3. Targeting ApoC3 might prevent organ damage and provide an anti-inflammatory treatment for vascular and kidney diseases.


Asunto(s)
Lesión Renal Aguda/inmunología , Apolipoproteína C-III/inmunología , Caspasa 8/metabolismo , Enfermedades Renales/inmunología , Monocitos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Lesión Renal Aguda/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Apolipoproteína C-III/genética , Línea Celular , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inflamasomas/inmunología , Inflamación/genética , Inflamación/inmunología , Enfermedades Renales/patología , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
3.
EMBO Rep ; 23(3): e53135, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34942054

RESUMEN

Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full-length Stim1A functions as a dominant-negative regulator of SOCE and ICRAC, facilitating sequence-specific fast calcium-dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell-type-specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP-SOCE crosstalk.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína ORAI1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
4.
Brain ; 145(9): 3131-3146, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103408

RESUMEN

Pathogenic variants in SPAST, the gene coding for spastin, are the single most common cause of hereditary spastic paraplegia, a progressive motor neuron disease. Spastin regulates key cellular functions, including microtubule-severing and endoplasmic reticulum-morphogenesis. However, it remains unclear how alterations in these cellular functions due to SPAST pathogenic variants result in motor neuron dysfunction. Since spastin influences both microtubule network and endoplasmic reticulum structure, we hypothesized that spastin is necessary for the regulation of Ca2+ homeostasis via store-operated calcium entry. Here, we show that the lack of spastin enlarges the endoplasmic reticulum and reduces store-operated calcium entry. In addition, elevated levels of different spastin variants induced clustering of STIM1 within the endoplasmic reticulum, altered the transport of STIM1 to the plasma membrane and reduced store-operated calcium entry, which could be rescued by exogenous expression of STIM1. Importantly, store-operated calcium entry was strongly reduced in induced pluripotent stem cell-derived neurons from hereditary spastic paraplegia patients with pathogenic variants in SPAST resulting in spastin haploinsufficiency. These neurons developed axonal swellings in response to lack of spastin. We were able to rescue both store-operated calcium entry and axonal swellings in SPAST patient neurons by restoring spastin levels, using CRISPR/Cas9 to correct the pathogenic variants in SPAST. These findings demonstrate that proper amounts of spastin are a key regulatory component for store-operated calcium entry mediated Ca2+ homeostasis and suggest store-operated calcium entry as a disease relevant mechanism of spastin-linked motor neuron disease.


Asunto(s)
Paraplejía Espástica Hereditaria , Calcio/metabolismo , Humanos , Microtúbulos , Neuronas Motoras/metabolismo , Espastina/genética
5.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175478

RESUMEN

By virtue of mitochondrial control of energy production, reactive oxygen species (ROS) generation, and maintenance of Ca2+ homeostasis, mitochondria play an essential role in modulating T cell function. The mitochondrial Ca2+ uniporter (MCU) is the pore-forming unit in the main protein complex mediating mitochondrial Ca2+ uptake. Recently, MCU has been shown to modulate Ca2+ signals at subcellular organellar interfaces, thus fine-tuning NFAT translocation and T cell activation. The mechanisms underlying this modulation and whether MCU has additional T cell subpopulation-specific effects remain elusive. However, mice with germline or tissue-specific ablation of Mcu did not show impaired T cell responses in vitro or in vivo, indicating that 'chronic' loss of MCU can be functionally compensated in lymphocytes. The current work aimed to specifically investigate whether and how MCU influences the suppressive potential of regulatory CD4 T cells (Treg). We show that, in contrast to genetic ablation, acute siRNA-mediated downregulation of Mcu in murine Tregs results in a significant reduction both in mitochondrial Ca2+ uptake and in the suppressive capacity of Tregs, while the ratios of Treg subpopulations and the expression of hallmark transcription factors were not affected. These findings suggest that permanent genetic inactivation of MCU may result in compensatory adaptive mechanisms, masking the effects on the suppressive capacity of Tregs.


Asunto(s)
Canales de Calcio , Linfocitos T Reguladores , Animales , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Regulación hacia Abajo , Mitocondrias/genética , Mitocondrias/metabolismo , Linfocitos T Reguladores/metabolismo
6.
Circulation ; 144(11): 893-908, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34192892

RESUMEN

BACKGROUND: Cardiovascular diseases and chronic kidney disease (CKD) are highly prevalent, aggravate each other, and account for substantial mortality. Both conditions are characterized by activation of the innate immune system. The alarmin interleukin-1α (IL-1α) is expressed in a variety of cell types promoting (sterile) systemic inflammation. The aim of the present study was to examine the role of IL-1α in mediating inflammation in the setting of acute myocardial infarction (AMI) and CKD. METHODS: We assessed the expression of IL-1α on the surface of monocytes from patients with AMI and patients with CKD and determined its association with atherosclerotic cardiovascular disease events during follow-up in an explorative clinical study. Furthermore, we assessed the inflammatory effects of IL-1α in several organ injury models in Il1a-/- and Il1b-/- mice and investigated the underlying mechanisms in vitro in monocytes and endothelial cells. RESULTS: IL-1α is strongly expressed on the surface of monocytes from patients with AMI and CKD compared with healthy controls. Higher IL-1α surface expression on monocytes from patients with AMI and CKD was associated with a higher risk for atherosclerotic cardiovascular disease events, which underlines the clinical relevance of IL-1α. In mice, IL-1α, but not IL-1ß, mediates leukocyte-endothelial adhesion as determined by intravital microscopy. IL-1α promotes accumulation of macrophages and neutrophils in inflamed tissue in vivo. Furthermore, IL-1α on monocytes stimulates their homing at sites of vascular injury. A variety of stimuli such as free fatty acids or oxalate crystals induce IL-1α surface expression and release by monocytes, which then mediates their adhesion to the endothelium via IL-1 receptor-1. IL-1α also promotes expression of the VCAM-1 (vascular cell adhesion molecule-1) on endothelial cells, thereby fostering the adhesion of circulating leukocytes. IL-1α induces inflammatory injury after experimental AMI, and abrogation of IL-1α prevents the development of CKD in oxalate or adenine-fed mice. CONCLUSIONS: IL-1α represents a key mediator of leukocyte-endothelial adhesion and inflammation in AMI and CKD. Inhibition of IL-1α may serve as a novel anti-inflammatory treatment strategy.


Asunto(s)
Adhesión Celular/fisiología , Células Endoteliales/metabolismo , Interleucina-1alfa/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Adhesión Celular/efectos de los fármacos , Endotelio/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-1alfa/farmacología , Ratones , Monocitos/metabolismo , Infarto del Miocardio/metabolismo , Neutrófilos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
J Cell Sci ; 133(1)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31822631

RESUMEN

ORAI1 proteins form highly selective Ca2+ channels in the plasma membrane. Crystallographic data point towards a hexameric stoichiometry of ORAI1 channels, whereas optical methods postulated ORAI1 channels to reside as dimers at rest, and other data suggests that they have a tetrameric configuration. Here, liquid-phase scanning transmission electron microscopy (STEM) and quantum dot (QD) labeling was utilized to study the conformation of ORAI1 proteins at rest. To address the question of whether ORAI1 was present as a dimer, experiments were designed using single ORAI1 monomers and covalently linked ORAI1 dimers with either one or two label-binding positions. The microscopic data was statistically analyzed via the pair correlation function. Label pairs were found in all cases, even for concatenated dimers with one label-binding position, which is only possible if a significant fraction of ORAI1 was assembled in larger order oligomers than dimers, binding at least two QDs. This interpretation of the data was consistent with Blue Native PAGE analysis showing that ORAI1 is mainly present as a complex of an apparent molecular mass larger than that calculated for a dimer.


Asunto(s)
Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Humanos
8.
Eur J Immunol ; 50(12): 2095-2098, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32697355

RESUMEN

In CTLs: High glucose-culture enhances thapsigargin-induced SOCE but decreases target recognition-induced Ca2+ influx. High glucose-culture regulates expression of ORAIs and STIMs without affecting glucose uptake. More high glucose-cultured CTLs are prone to necrosis after execution of killing.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Linfocitos T Citotóxicos/metabolismo , Tapsigargina/farmacología , Humanos , Transducción de Señal/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos
9.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466866

RESUMEN

The Ca2+ selective channel ORAI1 and endoplasmic reticulum (ER)-resident STIM proteins form the core of the channel complex mediating store operated Ca2+ entry (SOCE). Using liquid phase electron microscopy (LPEM), the distribution of ORAI1 proteins was examined at rest and after SOCE-activation at nanoscale resolution. The analysis of over seven hundred thousand ORAI1 positions revealed a number of ORAI1 channels had formed STIM-independent distinct supra-molecular clusters. Upon SOCE activation and in the presence of STIM proteins, a fraction of ORAI1 assembled in micron-sized two-dimensional structures, such as the known puncta at the ER plasma membrane contact zones, but also in divergent structures such as strands, and ring-like shapes. Our results thus question the hypothesis that stochastically migrating single ORAI1 channels are trapped at regions containing activated STIM, and we propose instead that supra-molecular ORAI1 clusters fulfill an amplifying function for creating dense ORAI1 accumulations upon SOCE-activation.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteína ORAI1/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Células HEK293 , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Tamaño de la Partícula , Transporte de Proteínas , Molécula de Interacción Estromal 1/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 932-943, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29626493

RESUMEN

Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.


Asunto(s)
Señalización del Calcio/inmunología , Diferenciación Celular/inmunología , Proteína ORAI2/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Humanos
11.
J Theor Biol ; 470: 64-75, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-30853394

RESUMEN

Release of Ca2+ from endoplasmatic retriculum (ER) Ca2+ stores causes stromal interaction molecules (STIM) in the ER membrane and ORAI proteins in the plasma membrane (PM) to interact and form the Ca2+ release activated Ca2+ (CRAC) channels, which represent a major Ca2+ entry route in non-excitable cells and thus control various cell functions. It is experimentally possible to mutate ORAI1 proteins and therefore modify, especially block, the Ca2+ influx into the cell. On the basis of the model of Hoover and Lewis (2011), we formulate a reaction-diffusion model to quantify the STIM1-ORAI1 interaction during CRAC channel formation and analyze different ORAI1 channel stoichiometries and different ratios of STIM1 and ORAI1 in comparison with experimental data. We incorporate the inhibition of ORAI1 channels by ROS into our model and calculate its contribution to the CRAC channel amplitude. We observe a large decrease of the CRAC channel amplitude evoked by mutations of ORAI1 proteins.


Asunto(s)
Señalización del Calcio , Modelos Biológicos , Mutación , Proteínas de Neoplasias , Proteína ORAI1 , Especies Reactivas de Oxígeno/metabolismo , Molécula de Interacción Estromal 1 , Animales , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
12.
Biochim Biophys Acta ; 1853(7): 1541-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25791427

RESUMEN

Orai1 subunits interacting with STIM1 molecules comprise the major components responsible for calcium release-activated calcium (CRAC) channels. The homologs Orai2 and Orai3 yield smaller store-operated currents when overexpressed and are mostly unable to substitute Orai1. Orai3 subunits are also essential components of store independent channel complexes and also tune inhibition of ICRAC by reactive oxygen species. Here we use patch-clamp, microscopy, Ca(2+)-imaging and biochemical experiments to investigate the interdependence of Orai2, Orai3 and Orai1. We demonstrate that store-operation and localization of Orai3 but not of Orai2 to STIM1 clusters in HEK cells or to the immunological synapse in T cells is facilitated by Orai1 while Orai3's store-independent activity remains unaffected. On the other hand, one Orai3 subunit confers redox-resistance to heteromeric channels. The inefficient store operation of Orai3 is partly due to the lack of three critical C-terminal residues, the insertion of which improves interaction with STIM1 and abrogates Orai3's dependence on Orai1. Our results suggest that Orai3 down-tunes efficient STIM1 gating when in a heteromeric complex with Orai1.


Asunto(s)
Canales de Calcio/metabolismo , Secuencia de Aminoácidos , Canales de Calcio/química , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Sinapsis Inmunológicas , Activación del Canal Iónico , Células Jurkat , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias , Proteína ORAI1 , Proteína ORAI2 , Oxidación-Reducción , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Molécula de Interacción Estromal 1 , Linfocitos T/metabolismo
13.
Microsc Microanal ; 22(4): 902-12, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27515473

RESUMEN

ORAI1 proteins are ion channel subunits and the essential pore-forming units of the calcium release-activated calcium channel complex essential for T-cell activation and many other cellular processes. In this study, we used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to image plasma membrane expressed ORAI1 proteins in whole Jurkat T cells in the liquid state. Utilizing a stably transfected Jurkat T cell clone expressing human ORAI1 with an extracellular human influenza hemagglutinin (HA) tag we investigated if liquid-phase STEM can be applied to detect recombinant surface expressed protein. Streptavidin coated quantum dots were coupled in a one-to-one stoichiometry to ORAI1 proteins detected by biotinylated anti-HA fragmented antibody fragments. High-resolution electron microscopic images revealed the individual label locations from which protein pair distances were determined. These data were analyzed using the pair correlation function and, in addition, an analysis of cluster size and frequency was performed. ORAI1 was found to be present in hexamers in a small fraction only, and ORAI1 resided mostly in monomers and dimers.


Asunto(s)
Membrana Celular/ultraestructura , Microscopía Electrónica de Transmisión de Rastreo , Proteína ORAI1/ultraestructura , Puntos Cuánticos/química , Membrana Celular/química , Humanos , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Puntos Cuánticos/ultraestructura
14.
J Biol Chem ; 288(3): 1653-64, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23212906

RESUMEN

A drop of endoplasmic reticulum Ca(2+) concentration triggers its Ca(2+) ssensor protein stromal interaction molecule 1 (STIM1) to oligomerize and accumulate within endoplasmic reticulum-plasma membrane junctions where it activates Orai1 channels, providing store-operated Ca(2+) entry. To elucidate the functional significance of N-glycosylation sites of STIM1, we created different mutations of asparagine-131 and asparagine-171. STIM1 NN/DQ resulted in a strong gain of function. Patch clamp, Total Internal Reflection Fluorescent (TIRF) microscopy, and fluorescence recovery after photobleaching (FRAP) analyses revealed that expression of STIM1 DQ mutants increases the number of active Orai1 channels and the rate of STIM1 translocation to endoplasmic reticulum-plasma membrane junctions with a decrease in current latency. Surprisingly, co-expression of STIM1 DQ decreased Orai1 protein, altering the STIM1:Orai1 stoichiometry. We describe a novel mathematical tool to delineate the effects of altered STIM1 or Orai1 diffusion parameters from stoichiometrical changes. The mutant uncovers a novel mechanism whereby "superactive" STIM1 DQ leads to altered oligomerization rate constants and to degradation of Orai1 with a change in stoichiometry of activator (STIM1) to effector (Orai1) ratio leading to altered Ca(2+) homeostasis.


Asunto(s)
Canales de Calcio/genética , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Canales de Calcio/química , Canales de Calcio/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Expresión Génica , Glicosilación , Células HEK293 , Humanos , Transporte Iónico , Células Jurkat , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Químicos , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Técnicas de Placa-Clamp , Multimerización de Proteína , Transporte de Proteínas , Molécula de Interacción Estromal 1 , Transfección
15.
J Cancer Res Clin Oncol ; 149(7): 3623-3635, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35963900

RESUMEN

PURPOSE: Strategies for Indolamine-2,3-dioxygenase 1 (IDO1) inhibition in cancer immunotherapy once produced encouraging results, but failed in clinical trials. Recent evidence indicates that immune cells in the tumour microenvironment, especially macrophages, contribute to immune dysregulation and therefore might play a critical role in drug resistance. METHODS: In this study, we investigated the significance of IDO1 expressing immune cells in primary tumours and corresponding lymph node metastases (LNMs) in oral squamous cell carcinoma (OSCC) by immunohistochemistry. The link between IDO1 and macrophages was investigated by flow cytometry in tumour tissue, healthy adjacent tissue and peripheral blood mononuclear cells (PBMCs). IDO1 activity (measured as Kynurenine/Tryptophan ratio) was assessed by ELISAs. RESULTS: High IDO1 expression in tumour-infiltrating immune cells was significantly correlated with advanced stages [Spearman's rank correlation (SRC), p = 0.027] and reduced progression-free survival (multivariate Cox regression, p = 0.034). IDO1 was significantly higher expressed in PBMCs of patients in advanced stages than in healthy controls (ANOVA, p < 0.05) and IDO1+ macrophages were more abundant in intratumoural areas than peritumoural (t test, p < 0.001). IDO1 expression in PBMCs was significantly correlated with IDO1 activity in serum (SRC, p < 0.05). IDO1 activity was significantly higher in patients with LNMs (t test, p < 0.01). CONCLUSION: All in all, IDO1 expressing immune cells, especially macrophages, are more abundant in advanced stages of OSCC and are associated with reduced progression-free survival. Further investigations are needed to explore their role in local and systemic immune response. The IDO1 activity might be a suitable biomarker of metastasis in OSCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Leucocitos Mononucleares/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa , Microambiente Tumoral
16.
Front Immunol ; 13: 838484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493468

RESUMEN

Immunological memory is important to protect humans against recurring diseases. Memory CD8+ T cells are required for quick expansion into effector cells but also provide immediate cytotoxicity against their targets. Whereas many functions of the two main cytotoxic subtypes, effector memory CD8+ T cells (TEM) and central memory CD8+ T cells (TCM), are well defined, single TEM and TCM cell cytotoxicity has not been quantified. To quantify cytotoxic efficiency of TEM and TCM, we developed a FRET-based single cell fluorescent assay with NALM6 target cells which allows analysis of target cell apoptosis, secondary necrosis following apoptosis, and primary necrosis after TEM- or TCM-target cell contact. Both, single cell and population cytotoxicity assays reveal a higher cytotoxic efficiency of TEM compared to TCM, as quantified by target cell apoptosis and secondary necrosis. Perforin, granzyme B, FasL, but not TRAIL expression are higher in TEM compared to TCM. Higher perforin levels (likely in combination with higher granzyme levels) mediate higher cytotoxic efficiency of TEM compared to TCM. Both, TEM and TCM need the same time to find their targets, however contact time between CTL and target, time to induce apoptosis, and time to induce secondary necrosis are all shorter for TEM. In addition, immune synapse formation in TEM appears to be slightly more efficient than in TCM. Defining and quantifying single TEM and TCM cytotoxicity and the respective mechanisms is important to optimize future subset-based immune therapies.


Asunto(s)
Antineoplásicos , Linfocitos T CD8-positivos , Humanos , Memoria Inmunológica , Necrosis/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Perforina/metabolismo
17.
Diabetes ; 71(8): 1706-1720, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622000

RESUMEN

Hypoxia-induced islet cell death, caused by an insufficient revascularization of the grafts, is a major obstacle for successful pancreatic islet transplantation. Recently, it has been reported that the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is expressed in pancreatic islets and that its loss protects against hypoxia-induced cell death. Therefore, we hypothesized that the inhibition of NLRP3 in islets improves the survival and endocrine function of the grafts. The transplantation of Nlrp3-/- islets or wild-type (WT) islets exposed to the NLRP3 inhibitor CY-09 into mouse dorsal skinfold chambers resulted in an improved revascularization compared with controls. An increased insulin release after NLRP3 inhibition caused the enhanced angiogenic response. Moreover, the inhibition of NLRP3 in hypoxic ß-cells triggered insulin gene expression by inducing the shuttling of MafA and pancreatic and duodenal homeobox-1 into the nucleus. This was mediated by a reduced interaction of NLRP3 with the thioredoxin-interacting protein (TXNIP). Transplantation of Nlrp3-/- islets or WT islets exposed to CY-09 under the kidney capsule of diabetic mice markedly improved the restoration of normoglycemia. These findings indicate that the inhibition of NLRP3 in isolated islets represents a promising therapeutic strategy to improve engraftment and function of the islets.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Diabetes Mellitus Experimental/metabolismo , Hipoxia/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
18.
J Gen Physiol ; 154(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35416945

RESUMEN

Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray-induced clustering of Orai1 and STIM1 and formation of a Ca2+ release-activated Ca2+ (CRAC) channel. A consequence of the x-ray-triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.


Asunto(s)
Calcio , Leucocitos Mononucleares , Calcio/metabolismo , Señalización del Calcio/fisiología , Humanos , Inmunidad , Leucocitos Mononucleares/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Linfocitos T/metabolismo , Rayos X
19.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230558

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is suggested to hamper antitumor immune response in multiple cancers. However, the role of TREM2 in oral squamous cell carcinoma (OSCC) and its expression in tumor-associated macrophages (TAMs) are unknown. In this study, TREM2 expression was analyzed in the primary tumors and corresponding lymph-node metastases of OSCC patients via immunohistochemistry on tissue microarrays. Human peripheral blood mononuclear cells (PBMCs) and single-cell suspensions of tumor and healthy adjacent tissues were analyzed for the presence of TREM2+ macrophages and TAMs using flow cytometry. The serum levels of soluble TREM2 (sTREM2) were quantified using an enzyme-linked immunosorbent assay. High TREM2 expression was associated with advanced UICC stages (Spearman's rank correlation (SRC), p = 0.04) and significantly reduced survival rates in primary tumors (multivariate Cox regression, progression-free survival: hazard ratio (HR) of 2.548, 95% confidence interval (CI) of 1.089−5.964, p = 0.028; overall survival: HR of 2.17, 95% CI of 1.021−4.613, p = 0.044). TREM2 expression was significantly increased in the PBMCs of OSCC patients in UICC stage IV compared with healthy controls (ANOVA, p < 0.05). The serum levels of sTREM2 were higher in advanced UICC stages, but they narrowly missed significance (SRC, p = 0.059). We demonstrated that TREM2 was multi-factorially associated with advanced stages and inferior prognosis in OSCC patients and that it could serve as a prognostic biomarker in OSCC patients. Targeting TREM2 has the potential to reshape the local and systemic immune landscape for the potential enhancement of patients' prognosis.

20.
Front Immunol ; 12: 687242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093590

RESUMEN

Immune responses involve mobilization of T cells within naïve and memory compartments. Tightly regulated Ca2+ levels are essential for balanced immune outcomes. How Ca2+ contributes to regulating compartment stoichiometry is unknown. Here, we show that plasma membrane Ca2+ ATPase 4 (PMCA4) is differentially expressed in human CD4+ T compartments yielding distinct store operated Ca2+ entry (SOCE) profiles. Modulation of PMCA4 yielded a more prominent increase of SOCE in memory than in naïve CD4+ T cell. Interestingly, downregulation of PMCA4 reduced the effector compartment fraction and led to accumulation of cells in the naïve compartment. In silico analysis and chromatin immunoprecipitation point towards Ying Yang 1 (YY1) as a transcription factor regulating PMCA4 expression. Analyses of PMCA and YY1 expression patterns following activation and of PMCA promoter activity following downregulation of YY1 highlight repressive role of YY1 on PMCA expression. Our findings show that PMCA4 adapts Ca2+ levels to cellular requirements during effector and quiescent phases and thereby represent a potential target to intervene with the outcome of the immune response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Señalización del Calcio , Calcio/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Factor de Transcripción YY1/metabolismo , Citometría de Flujo , Humanos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA