RESUMEN
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
Asunto(s)
Discapacidad Intelectual , Megalencefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Niño , Pez Cebra/genética , Pez Cebra/metabolismo , Caenorhabditis elegans/metabolismo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Fenotipo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Megalencefalia/genética , Discapacidades del Desarrollo/genética , Mutación Missense/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismoRESUMEN
PURPOSE: Pathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified. METHODS: Chromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. RESULTS: In total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect. CONCLUSION: HECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.
Asunto(s)
Síndrome de Angelman , Trastornos del Neurodesarrollo , Humanos , Síndrome de Angelman/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Trastornos del Neurodesarrollo/genética , FenotipoRESUMEN
PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.