Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 11(24): 18505-18513, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003688

RESUMEN

Marine habitats are Earth's largest aquatic ecosystems, yet little is known about marine organism's genomes. Molecular studies can unravel their genetics print, thus shedding light on specie's adaptation and speciation with precise authentication. However, extracting high molecular weight DNA from marine organisms and subsequent DNA library preparation for whole genome sequencing is challenging. The challenges can be explained by excessive metabolites secretion that co-precipitates with DNA and barricades their sequencing. In this work, we sought to resolve this issue by describing an optimized isolation method and comparing its performance with the most commonly reported protocols or commercial kits: SDS/phenol-chloroform method, Qiagen Genomic Tips kit, Qiagen DNeasy Plant mini kit, a modified protocol of Qiagen DNeasy Plant kit, Qiagen DNeasy Blood and Tissue kit, and Qiagen Qiamp DNA Stool mini kit. Our method proved to work significantly better for different marine species regardless of their shape, consistency, and sample preservation, improving Oxford Nanopore Technologies sequencing yield by 39 folds for Spirobranchus sp. and enabling generation of almost 10 GB data per flow cell/run for Chrysaora sp. and Palaemon sp. samples.

2.
Front Cell Infect Microbiol ; 11: 768883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869069

RESUMEN

Qatar, a country with a strong health system and a diverse population consisting mainly of expatriate residents, has experienced two large waves of COVID-19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population's genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Genómica , Humanos , Qatar/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA