Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 130: 1-11, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375788

RESUMEN

Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Óxido Nítrico/farmacología , Microglía , Neuroglía , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/prevención & control
2.
Saudi Pharm J ; 31(12): 101870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053738

RESUMEN

This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.

3.
Saudi Pharm J ; 31(5): 752-764, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181145

RESUMEN

The purpose of immunization is the effective cellular and humoral immune response against antigens. Several studies on novel vaccine delivery approaches such as micro-particles, liposomes & nanoparticles, etc. against infectious diseases have been investigated so far. In contrast to the conventional approaches in vaccine development, a virosomes-based vaccine represents the next generation in the field of immunization because of its balance between efficacy and tolerability by virtue of its mechanism of immune instigation. The versatility of virosomes as a vaccine adjuvant, and delivery vehicle of molecules of different nature, such as peptides, nucleic acids, and proteins, as well as provide an insight into the prospect of drug targeting using virosomes. This article focuses on the basics of virosomes, structure, composition formulation and development, advantages, interplay with the immune system, current clinical status, different patents highlighting the applications of virosomes and their status, recent advances, and research associated with virosomes, the efficacy, safety, and tolerability of virosomes based vaccines and the future prospective.

4.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628545

RESUMEN

Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.


Asunto(s)
Cannabinoides , Endocannabinoides , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Humanos , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562956

RESUMEN

Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.


Asunto(s)
Neuropéptidos , Enfermedad de Parkinson , Neuronas Dopaminérgicas/metabolismo , Humanos , Inflamación/patología , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054862

RESUMEN

Parkinson's disease (PD) is a complicated and incapacitating neurodegenerative malady that emanates following the dopaminergic (DArgic) nerve cell deprivation in the substantia nigra pars compacta (SN-PC). The etiopathogenesis of PD is still abstruse. Howbeit, PD is hypothesized to be precipitated by an amalgamation of genetic mutations and exposure to environmental toxins. The aggregation of α-synucelin within the Lewy bodies (LBs), escalated oxidative stress (OS), autophagy-lysosome system impairment, ubiquitin-proteasome system (UPS) impairment, mitochondrial abnormality, programmed cell death, and neuroinflammation are regarded as imperative events that actively participate in PD pathogenesis. The central nervous system (CNS) relies heavily on redox-active metals, particularly iron (Fe) and copper (Cu), in order to modulate pivotal operations, for instance, myelin generation, synthesis of neurotransmitters, synaptic signaling, and conveyance of oxygen (O2). The duo, namely, Fe and Cu, following their inordinate exposure, are viable of permeating across the blood-brain barrier (BBB) and moving inside the brain, thereby culminating in the escalated OS (through a reactive oxygen species (ROS)-reliant pathway), α-synuclein aggregation within the LBs, and lipid peroxidation, which consequently results in the destruction of DArgic nerve cells and facilitates PD emanation. This review delineates the metabolism of Fe and Cu in the CNS, their role and disrupted balance in PD. An in-depth investigation was carried out by utilizing the existing publications obtained from prestigious medical databases employing particular keywords mentioned in the current paper. Moreover, we also focus on decoding the role of metal complexes and chelators in PD treatment. Conclusively, metal chelators hold the aptitude to elicit the scavenging of mobile/fluctuating metal ions, which in turn culminates in the suppression of ROS generation, and thereby prelude the evolution of PD.


Asunto(s)
Metales/efectos adversos , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Animales , Quelantes/farmacología , Quelantes/uso terapéutico , Humanos , Degeneración Nerviosa/complicaciones , Oxidación-Reducción , Estrés Oxidativo , Enfermedad de Parkinson/complicaciones
7.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630658

RESUMEN

This study was aimed to perform the mechanistic investigations of chalcone scaffold as inhibitors of acetylcholinesterase (AChE) enzyme using molecular docking and molecular dynamics simulation tools. Basic chalcones (C1-C5) were synthesized and their in vitro AChE inhibition was tested. Binding interactions were studied using AutoDock and Surflex-Dock programs, whereas the molecular dynamics simulation studies were performed to check the stability of the ligand-protein complex. Good AChE inhibition (IC50 = 22 ± 2.8 to 37.6 ± 0.75 µM) in correlation with the in silico results (binding energies = -8.55 to -8.14 Kcal/mol) were obtained. The mechanistic studies showed that all of the functionalities present in the chalcone scaffold were involved in binding with the amino acid residues at the binding site through hydrogen bonding, π-π, π-cation, π-sigma, and hydrophobic interactions. Molecular dynamics simulation studies showed the formation of stable complex between the AChE enzyme and C4 ligand.


Asunto(s)
Chalcona , Chalconas , Acetilcolinesterasa/metabolismo , Chalconas/química , Inhibidores de la Colinesterasa/química , Ligandos , Simulación del Acoplamiento Molecular
8.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744831

RESUMEN

Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer's disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.


Asunto(s)
Alcaloides , Berberina , Diabetes Mellitus Tipo 2 , Antiinflamatorios , Berberina/farmacocinética , Berberina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Humanos , Nanotecnología , Preparaciones Farmacéuticas
9.
Inflammopharmacology ; 30(4): 1153-1166, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35802283

RESUMEN

Traumatic brain injury (TBI) is an important global health concern that represents a leading cause of death and disability. It occurs due to direct impact or hit on the head caused by factors such as motor vehicles, crushes, and assaults. During the past decade, an abundance of new evidence highlighted the importance of inflammation in the secondary damage response that contributes to neurodegenerative and neurological deficits after TBI. It results in disruption of the blood-brain barrier (BBB) and initiates the release of macrophages, neutrophils, and lymphocytes at the injury site. A growing number of researchers have discovered various signalling pathways associated with the initiation and progression of inflammation. Targeting different signalling pathways (NF-κB, JAK/STAT, MAPKs, PI3K/Akt/mTOR, GSK-3, Nrf2, RhoGTPase, TGF-ß1, and NLRP3) helps in the development of novel anti-inflammatory drugs in the management of TBI. Several synthetic and herbal drugs with both anti-inflammatory and neuroprotective potential showed effective results. This review summarizes different signalling pathways, associated pathologies, inflammatory mediators, pharmacological potential, current status, and challenges with anti-inflammatory drugs.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Neuroinflamatorias , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/uso terapéutico , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas
10.
Molecules ; 27(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956919

RESUMEN

The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and pose a significant burden mentally, socially and economically on both the individual and their family. These disorders express several symptoms, such as tremors, dystonia, loss of cognitive functions, impairment of motor activity leading to immobility, loss of memory and many more which worsen with time. The treatment employed in management of these debilitating neurodegenerative disorders, such as Parkinson's disease (which mainly involves the loss of dopaminergic neurons in the nigrostriatal region), Alzheimer's disease (which arises due to accumulation of Tau proteins causing diffusive atrophy in the brain), Huntington's disease (which involves damage of striatal and spinal neurons, etc.), have several adverse effects, leading to exploration of several lead targets and molecules existing in herbal drugs. The current review highlights the mechanistic role of natural products in the treatment of several neurodegenerative and cerebrovascular diseases such as Parkinson's disease, Alzheimer's disease, ischemic stroke and depression.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos Cerebrovasculares/tratamiento farmacológico , Humanos , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico
11.
Inflammopharmacology ; 30(5): 1555-1567, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029362

RESUMEN

A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.


Asunto(s)
Artritis Reumatoide , Endotelina-1 , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Citocinas , Células Endoteliales , Endotelina-1/metabolismo , Endotelinas/metabolismo , Humanos , Especies Reactivas de Oxígeno , Superóxidos , Vasoconstrictores/uso terapéutico
12.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144491

RESUMEN

Since ancient times, Chrysopogon zizanioides has been utilized as a traditional medicinal plant for the treatment of numerous ailments, but neither its plant extract form nor its phytoconstituents have been fully explored. With this in mind, the present research was designed to isolate and structurally characterize one of its chemical constituents and evaluate its cytotoxic potential. Therefore, an ethanolic extract of roots was prepared and subjected to column chromatography using solvents of varying polarities. The obtained pure compound was characterized using various chromatographic and spectroscopic techniques such as high-performance liquid chromatography (HPLC), carbon and proton nuclear magnetic resonance (NMR), and liquid chromatography-mass spectroscopy (LC-MS) and identified as longifolene. This compound was evaluated for its cytotoxic potential using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the prostate (DU-145), oral (SCC-29B) cancer cell line and normal kidney cell line (Vero cells), taking doxorubicin as a standard drug. The obtained outcomes revealed that longifolene possesses cytotoxic potential against both prostate (IC50 = 78.64 µg/mL) as well as oral (IC50 = 88.92 µg/mL) cancer cell lines with the least toxicity in healthy Vero cells (IC50 = 246.3 µg/mL) when compared to doxorubicin. Hence, this primary exploratory study of longifolene exhibited its cytotoxic potency along with wide safety margins in healthy cell lines, giving an idea that the compounds possess some ability to differentiate between cancerous cells and healthy cells.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Chrysopogon , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Carbono , Chlorocebus aethiops , Doxorrubicina , Masculino , Extractos Vegetales/química , Extractos Vegetales/farmacología , Protones , Sesquiterpenos , Solventes/química , Células Vero
13.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144587

RESUMEN

The main characteristic feature of diabetes mellitus is the disturbance of carbohydrate, lipid, and protein metabolism, which results in insulin insufficiency and can also lead to insulin resistance. Both the acute and chronic diabetic cases are increasing at an exponential rate, which is also flagged by the World Health Organization (WHO) and the International Diabetes Federation (IDF). Treatment of diabetes mellitus with synthetic drugs often fails to provide desired results and limits its use to symptomatic treatment only. This has resulted in the exploration of alternative medicine, of which herbal treatment is gaining popularity these days. Owing to their safety benefits, treatment compliance, and ability to exhibit effects without disturbing internal homeostasis, research in the field of herbal and ayurvedic treatments has gained importance. Medicinal phytoconstituents include micronutrients, amino acids, proteins, mucilage, critical oils, triterpenoids, saponins, carotenoids, alkaloids, flavonoids, phenolic acids, tannins, and coumarins, which play a dynamic function in the prevention and treatment of diabetes mellitus. Alkaloids found in medicinal plants represent an intriguing potential for the inception of novel approaches to diabetes mellitus therapies. Thus, this review article highlights detailed information on alkaloidal phytoconstituents, which includes sources and structures of alkaloids along with the associated mechanism involved in the management of diabetes mellitus. From the available literature and data presented, it can be concluded that these compounds hold tremendous potential for use as monotherapies or in combination with current treatments, which can result in the development of better efficacy and safety profiles.


Asunto(s)
Alcaloides , Diabetes Mellitus , Saponinas , Drogas Sintéticas , Triterpenos , Alcaloides/uso terapéutico , Aminoácidos/uso terapéutico , Carbohidratos , Carotenoides/uso terapéutico , Cumarinas/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Flavonoides/uso terapéutico , Humanos , Insulina/uso terapéutico , Lípidos/uso terapéutico , Micronutrientes/uso terapéutico , Aceites/uso terapéutico , Fitoterapia , Saponinas/uso terapéutico , Drogas Sintéticas/uso terapéutico , Taninos/uso terapéutico , Triterpenos/uso terapéutico
14.
Molecules ; 27(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684298

RESUMEN

Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer's disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases-AChE and butyrylcholinesterase (BChE)-noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/química , Canales de Calcio , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conejos
15.
Molecules ; 27(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744922

RESUMEN

Immunotherapy, which stimulates the body's immune system, has received a considerable amount of press in recent years because of its powerful benefits. Cancer immunotherapy has shown long-term results in patients with advanced disease that are not seen with traditional chemotherapy. Immune checkpoint inhibitors, cytokines like interleukin 2 (IL-2) and interferon-alpha (IFN), and the cancer vaccine sipuleucel-T have all been licensed and approved by the FDA for the treatment of various cancers. These immunotherapy treatments boost anticancer responses by stimulating the immune system. As a result, they have the potential to cause serious, even fatal, inflammatory and immune-related side effects in one or more organs. Immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cell therapy are two immunotherapy treatments that are increasingly being used to treat cancer. Following their widespread usage in the clinic, a wave of immune-related adverse events (irAEs) impacting virtually every system has raised concerns about their unpredictability and randomness. Despite the fact that the majority of adverse effects are minimal and should be addressed with prudence, the risk of life-threatening complications exists. Although most adverse events are small and should be treated with caution, the risk of life-threatening toxicities should not be underestimated, especially given the subtle and unusual indications that make early detection even more difficult. Treatment for these issues is difficult and necessitates a multidisciplinary approach involving not only oncologists but also other internal medicine doctors to guarantee quick diagnosis and treatment. This study's purpose is to give a fundamental overview of immunotherapy and cancer-related side effect management strategies.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Inmunoterapia , Neoplasias , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/tratamiento farmacológico
16.
Saudi Pharm J ; 30(12): 1755-1764, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601504

RESUMEN

Introduction: Given the severity of the condition and the increasing number of patients, developing effective therapies for Alzheimer's disease has become a significant necessity. Aggregation of Amyloid-Beta (Aß) plaques and Tau Protein Tangles in the brain's nerve tissue are two of the most histopathological/pathophysiological symptoms. Another important element involved in the etiology of Alzheimer's disease is the reduction in acetylcholine (ACh) levels in the brain. Currently available medications for Alzheimer's disease treatment, such as cholinesterase inhibitors and an antagonist of the N-methyl-d-aspartate receptor, can temporarily reduce dementia symptoms but not stop or reverse disease development. In addition, several medicinal plants have been shown to diminish the degenerative characteristics associated with Alzheimer's disease, either in its crude form or as isolated chemicals. Aim: This review summarises the results from previous studies that reflect an array of novel therapies underway in various phases of clinical trials. Many are discontinued due to non-adherence to the designed endpoints or the surfacing of unavoidable side effects. The present piece of article focuses on the approved drugs for the treatment of Alzheimer's disease and their related mode of action as well as the promising therapies for the treatment of the said disease. Special attention has been placed on the researched herbal drugs, with the pipeline of novel therapies underway in various phases of clinical trials. Result: The current article includes a list of approved pharmaceuticals for treating Alzheimer's disease, prospective therapies for the illness's treatment, and a pipeline of novel therapies in various stages of clinical trials. Conclusion: The results suggest that the drugs under clinical trials may open new pathways for the effective treatment of patients with Alzheimer's disease while improving their quality of life.

17.
Saudi Pharm J ; 30(11): 1527-1537, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36465843

RESUMEN

Purpose: The primary goal of this research is to improve the bioavailability and efficacy of Sumatriptan succinate by incorporating it in the mucoadhesive film for the treatment of migraine. Mucoadhesive film offers an excellent substitute to deliver the drug in the systemic circulation and eliminate the chance of first-pass metabolism. Method: Using central composite design (CCD), various formulations were created by incorporating polymer, plasticizer, and water, and an optimized preparation was created using statistical screening. The optimization has been performed by applying a 34 factorial method based on dependent variables such as Drug content (%), Swelling index (%), Folding endurance (Number of times), and Mucoadhesive strength (g). Results: The actual experimental values obtained were compared with those predicted by the mathematical models. Formulation S9 was selected as an optimized formulation because it showed the lowest standard deviation between predicted and actual values compared to other formulations. In the case of the S9 formulation, approximately 77.12% of the drug was released within 24 h, but initially, it showed burst release. In addition, the in-vitro release of pure drug suspension showed 99.32% drug release within 2 h. That signified that the developed formulation provides sustained release due to presence of grafted co-polymer. Conclusion: Formulation holding drug-loaded grafted film showed decent sustained and controlled drug release characteristics compared to a pure drug suspension. S9 formulation showed better results than other formulations in drug content, swelling index, folding endurance, and mucoadhesive strength, which is further used to treat migraine.

18.
J Biomater Sci Polym Ed ; : 1-28, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767213

RESUMEN

The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.

19.
Heliyon ; 10(9): e29718, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694079

RESUMEN

Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.

20.
Front Biosci (Landmark Ed) ; 29(2): 55, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38420797

RESUMEN

Breast cancer (BC) is the second most common malignancy in the world. Numerous studies have demonstrated the association between human leukocyte antigen (HLA) and cancer. The occurrence and development of BC are closely linked to genetic factors. Human leukocyte antigens G and E (HLA-G and HLA-E) are non-classical major histocompatibility complex (MHC) class I molecules. These molecules play an important role in immune surveillance by inhibiting the cytotoxic and natural killer T cells responsible for immune escape. The expression of HLA-G and HLA-E has been associated with several diseases, including tumors. The HLA system plays a key role in the escape of tumor cells from immune surveillance. This review aims to determine the correlation between BC susceptibility and HLA markers specific HLA alleles such as HLA-B07, HLA-DRB111, HLA-DRB113, and HLA-DRB115 are associated with an increased risk of developing BC. Furthermore, HLA-G mutations have been attributed to an elevated likelihood of metastasis in BC patients. Understanding the complex associations between the HLA system and BC development is critical for developing novel cancer prevention, detection, and treatment strategies. This review emphasizes the importance of analyzing HLA polymorphisms in the management of BC patients, as well as the urgent need for further research in this area.


Asunto(s)
Neoplasias de la Mama , Antígenos HLA-G , Humanos , Femenino , Antígenos HLA-G/genética , Neoplasias de la Mama/genética , Antígenos HLA-E , Polimorfismo Genético , Antígenos de Histocompatibilidad Clase II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA