Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

2.
Chem Soc Rev ; 47(22): 8203-8237, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30137079

RESUMEN

Because of its unmatched resource potential, solar energy utilization currently is one of the hottest research areas. Much effort has been devoted to developing advanced materials for converting solar energy into electricity, solar fuels, active chemicals, or heat. Among them, TiO2 nanomaterials have attracted much attention due to their unique properties such as low cost, nontoxicity, good stability and excellent optical and electrical properties. Great progress has been made, but research opportunities are still present for creating new nanostructured TiO2 materials. Core-shell structured nanomaterials are of great interest as they provide a platform to integrate multiple components into a functional system, showing improved or new physical and chemical properties, which are unavailable from the isolated components. Consequently, significant effort is underway to design, fabricate and evaluate core-shell structured TiO2 nanomaterials for solar energy utilization to overcome the remaining challenges, for example, insufficient light absorption and low quantum efficiency. This review strives to provide a comprehensive overview of major advances in the synthesis of core-shell structured TiO2 nanomaterials for solar energy utilization. This review starts from the general protocols to construct core-shell structured TiO2 nanomaterials, and then discusses their applications in photocatalysis, water splitting, photocatalytic CO2 reduction, solar cells and photothermal conversion. Finally, we conclude with an outlook section to offer some insights on the future directions and prospects of core-shell structured TiO2 nanomaterials and solar energy conversion.

3.
ACS Omega ; 5(25): 15028-15038, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637776

RESUMEN

Porous-activated carbon (PAC) materials have been playing a vital role in meeting the challenges of the ever-increasing demand for alternative clean and sustainable energy technologies. In the present scenario, a facile approach is suggested to produce hierarchical PAC at different activation temperatures in the range of 600 to 900 °C by using cow dung (CD) waste as a precursor, and H3PO4 is adopted as the nonconventional activating agent to obtain large surface area values. The as-prepared cow dung-based PAC (CDPAC) is graphitic in nature with mixed micro- and mesoporous textures. High-resolution scanning electron microscopy depicts the morphology of CDPAC as nanoporous structures with a uniform arrangement. High-resolution transmission electron microscopy reveals spherical carbon dense nanoparticles with dense tiny spherical carbon particles. N2 adsorption-desorption isotherms show a very high specific surface area of 2457 m2/g for the CDPAC 9 (CD 9) sample with a large pore volume of 1.965 cm3/g. Electrochemical measurements of the CD 9 sample show a good specific capacitance (C s) of 347 F/g at a lower scan rate (5 mV/s) with improved cyclic stability, which is run up to 5000 cycles at a low current density (0.5 A/g). Hence, we choose an activated carbon prepared at 900 °C to fabricate the modified electrode material. In this regard, a flexible type symmetric supercapacitor device was fabricated, and the electrochemical test results show a supercapacitance value (C s) of 208 F/g.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA