Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927998

RESUMEN

Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.


Asunto(s)
Quimiocina CXCL12 , Interleucina-6 , Interleucina-8 , Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Quimiocina CXCL12/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Medios de Cultivo Condicionados , Factor A de Crecimiento Endotelial Vascular/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Células Cultivadas , Piel/metabolismo , Piel/citología , Proliferación Celular , Quimiocina CCL2/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo
2.
Mar Drugs ; 19(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34564164

RESUMEN

Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.


Asunto(s)
Colágeno/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Bovinos , Gadus morhua , Hidrólisis , Microscopía Electrónica de Rastreo , Ingeniería de Tejidos
3.
Pharmaceutics ; 16(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38258096

RESUMEN

This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.

4.
Polymers (Basel) ; 16(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675083

RESUMEN

This paper provides a study of two bone substitutes: a hybrid porous polymer and an osteoplastic matrix based on a bovine-derived xenograft. Both materials are porous, but their pore characteristics are different. The osteoplastic matrix has pores of 300-600 µm and the hybrid polymer has smaller pores, generally of 6-20 µm, but with some pores up to 100 µm across. SEM data confirmed the porometry results and demonstrated the different structures of the materials. Therefore, both materials were characterized by an interconnected porous structure and provided conditions for the adhesion and vital activity of human ASCs in vitro. In an experimental model of rabbit shin bone defect, it was shown that, during the 6-month observation period, neither of the materials caused negative reactions in the experimental animals. By the end of the observation period, restoration of the defects in animals in both groups was completed, and elements of both materials were preserved in the defect areas. Data from morphological examinations and CT data demonstrated that the rate of rabbit bone tissue regeneration with the hybrid polymer was comparable to that with the osteoplastic matrix. Therefore, the hybrid polymer has good potential for use in further research and improvement in biomedical applications.

5.
Int J Burns Trauma ; 13(2): 13-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215513

RESUMEN

Cell therapy is actively used to treat skin defects, particularly burn lesions. The effectiveness of its application may depend on the appropriate choice of wound dressings used together with any cellular material. The aim of the study was to investigate the interaction of 4 hydrogel dressings used in clinical practice with human cells in an in vitro model to determine if their use in combination with cell therapy is possible. The effect of the dressings on the growth medium was assessed by considering the changes caused in the medium's acid-base equilibrium (pH) and viscosity. Cytotoxicity was determined by applying an MTT-assay and by direct contact methods. Cell adhesion and viability on the dressing surfaces were analyzed using fluorescence microscopy. Proliferative and secretory cell activity were determined concurrently. Characterized human dermal fibroblast cultures were used as the test cultures. Results: The tested dressings interacted differently with the growth medium and the test cultures. 1-day extracts of all dressings had almost no effect on the acid-base balance, but, after 7 days, the pH of the dressing Type 2 extract had sharply acidified. The viscosity of the media under the influence of dressings of Types 2 and 3 had also markedly increased. MTT-assays showed nontoxicity of all the 1-day-incubated dressing extracts, while incubation for 7-days resulted in extracts with evident cytotoxicity, which was reduced upon dilution. Cell adhesion to the surfaces of the dressings differed, being observed occurring on dressings 2 and 3, and to a limited extent on dressing 4. Cells under dressing 1 showed evident proliferative and secretory activity whereas the other dressings impaired either proliferation or secretion processes. These effects indicate that, in general, comprehensive studies including a variety of methodological approaches at the in vitro stage are needed to allow the selection of appropriate dressings if they are to be used in combination with cell therapy to act as cell carriers. Of those investigated, the Type 1 dressing can be recommended as a protective dressing for use after transplantation of cells into a wound defect area by some other method.

6.
Polymers (Basel) ; 15(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299356

RESUMEN

Porous polymer monoliths with thicknesses of 2 and 4 mm were obtained via polymerization of ethylene glycol dimethacrylate (EGDMA) under the influence visible-light irradiation in the presence of a 70 wt% 1-butanol porogenic agent and o-quinone photoinitiators. The o-quinones used were: 3,5-di-tret-butyl-benzoquinone-1,2 (35Q), 3,6-di-tret-butyl-benzoquinone-1,2 (36Q), camphorquinone (CQ), and 9,10-phenanthrenequinone (PQ). Porous monoliths were also synthesized from the same mixture but using 2,2'-azo-bis(iso-butyronitrile) (AIBN) at 100 °C instead o-quinones. According to the results of scanning electron microscopy, all the resulting samples were conglomerates of spherical, polymeric particles with pores between them. Use of mercury porometry showed that the interconnected pore systems of all the polymers were open. The average pore size, Dmod, in such polymers strongly depended on both the nature of the initiator and the method of initiation of polymerization. For polymers obtained in the presence of AIBN, the Dmod value was as low as 0.8 µm. For polymers obtained via photoinitiation in the presence of 36Q, 35Q, CQ, and PQ, the Dmod values were significantly greater, i.e., 9.9, 6.4, 3.6, and 3.7 µm, respectively. The compressive strength and Young's modulus of the porous monoliths increased symbatically in the series PQ < CQ < 36Q < 35Q < AIBN with decreasing proportions of large pores (over 12 µm) in their polymer structures. The photopolymerization rate of the EGDMA and 1-butanol, 30:70 wt% mixture was maximal for PQ and minimal for 35Q. All polymers tested were non-cytotoxic. Based on the data from MTT testing, it can be noted that the polymers obtained via photoinitiation were characterized by their positive effect on the proliferative activity of human dermal fibroblasts. This makes them promising osteoplastic materials for clinical trials.

7.
Polymers (Basel) ; 15(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850115

RESUMEN

A study is presented on four polymers of the polyurethane family, obtained using a two-stage process. The first composition is the basic polymer; the others differ from it by the presence of a variety of fillers, introduced to provide radiopacity. The fillers used were 15% bismuth oxide (Composition 2), 15% tantalum pentoxide (Composition 3), or 15% zirconium oxide (Composition 4). Using a test culture of human fibroblasts enabled the level of cytotoxicity of the compositions to be determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, along with variations in the characteristics of the cells resulting from their culture directly on the specimens. The condition of cells on the surfaces of the specimens was assessed using fluorescence microscopy. It was shown that introducing 15% bismuth, tantalum, or zinc compounds as fillers produced a range of effects on the biological characteristics of the compositions. With the different fillers, the levels of toxicity differed and the cells' proliferative activity or adhesion was affected. However, in general, all the studied compositions may be considered cytocompatible in respect of their biological characteristics and are promising for further development as bases for bone-substituting materials. The results obtained also open up prospects for further investigations of polyurethane compounds.

8.
Dalton Trans ; 51(3): 969-977, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34931203

RESUMEN

This work is devoted to the study of the features of isomorphism in compounds of a Ca-Na-Bi-P-O-F system with a crystalline structure of the mineral apatite, as well as its effect on the biocompatibility of substances in relation to human cells in an in vitro model. A Ca10-2xBixNax(PO4)6F2 system (x = 0, 1, 2, 3, 4, and 5) is characterized by continuous isomorphism, which follows from the minimum deviations of the unit cell parameters from the Vegard and Rötgers rules. The refinement of the crystal structure showed that the cations are unevenly distributed between the 4f and 6h positions of the crystal structure of apatite: the bismuth ions are predominantly localized in the 6h position, while the sodium ions are concentrated in the 4f position. A standard MTT test of the biocompatibility of compounds with x = 1, 2, 3, and 4, and at x = 1 showed an anomaly in the form of an increased relative cell growth rate. This paper discusses the possible crystal-chemical and morphological reasons for this phenomenon.


Asunto(s)
Apatitas/química , Materiales Biocompatibles , Bismuto/química , Compuestos de Calcio/química , Modelos Moleculares , Estructura Molecular , Compuestos de Sodio/química
9.
Polymers (Basel) ; 13(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34685229

RESUMEN

The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin-collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.

10.
Macromol Biosci ; 21(5): e2000402, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33759338

RESUMEN

Porous polymer materials derived from poly(ethylene glycol dimethacrylate) (poly-EGDMA) and antibiotic containing polylactide (PLA) are obtained for the first time. Porous poly-EGDMA monoliths with a system of open interconnected pores are synthesized by a visible light-induced radical polymerization of EGDMA in the presence of 70 wt% of porogenic agent, e.g., 1-butanol, 1-hexanol, 1-octanol, or cyclohexanol. The porosity of the obtained polymers is 75-78%. A modal pore size depends on the nature of the porogen and varies from 0.5 µm (cyclohexanol) to 12 µm (1-butanol). The polymer matrix made with 1-butanol features the presence of pores ranging from 1 to 100 µm. The pore surface of poly-EGDMA matrices is inlayered with poly-D,L-lactide (Mn  23 × 103  Da, PDI 1.31). The PLA-modified poly-EGDMA retains a porous structure that is similar to the initial poly-EGDMA but with improved strength characteristics. The presence of antibiotic containing PLA ensures a high and continuous antibacterial activity of the hybrid polymeric material for 7 days. The nontoxicity of all the porous matrices studied makes them promising for clinical tests as osteoplastic materials.


Asunto(s)
Antibacterianos/química , Metacrilatos/química , Poliésteres/química , Polietilenglicoles/química , Polímeros/química , Andamios del Tejido , Materiales Biocompatibles Revestidos , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Porosidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
11.
Gels ; 6(4)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255558

RESUMEN

The most difficult issue when using tissue engineering products is enabling the ability to store them without losing their restorative capacity. The numbers and viability of mesenchymal stem cells encapsulated in a hydrogel scaffold after cryostorage at -80 °C (by using, individually, two kinds of cryoprotectors-Bambanker and 10% DMSO (Dimethyl sulfoxide) solution) for 3, 6, 9, and 12 months were determined, with subsequent assessment of cell proliferation after 96 h. The analysis of the cellular component was performed using fluorescence microscopy and the two fluorochromes-Hoechst 3334 and NucGreenTM Dead 488. The experimental protocol ensured the preservation of cells in the scaffold structure, retaining both high viability and proliferative activity during storage for 3 months. Longer storage of scaffolds led to their significant changes. Therefore, after 6 months, the proliferative activity of cells decreased. Cryostorage of scaffolds for 9 months led to a decrease in cells' viability and proliferative activity. As a result of cryostorage of scaffolds for 12 months, a decrease in viability and proliferative activity of cells was observed, as well as pronounced changes in the structure of the hydrogel. The described scaffold cryostorage protocol could become the basis for the development of storage protocols for such tissue engineering products, and for helping to extend the possibilities of their clinical use while accelerating their commercialization.

12.
MethodsX ; 7: 101146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33665147

RESUMEN

One of the urgent problems arising while carrying out research in the field of scaffold technology is achieving an objective, direct, quantitative analysis of cells cultivated within a scaffold; one which allows characterization of the density distribution of the cells, their viability and their proliferative activity when encapsulated within the scaffold. This problem is associated with the peculiarities of cell cultivation in the three-dimensional structure of scaffolds, including limitations imposed on the possibility of direct cell counting using light microscopy. Also, most scaffolds are opaque, so this generally excludes methods of quantitative analysis using light microscopy. There are methods for the quantitative analysis of cells in a scaffold based on the assessment of their metabolic activity (for example: MTT test). However, these methods are indirect and can result in significant errors. This is due to differences in the metabolic activity of the cells, for example, in different phases of mitosis. Methods based on direct counting of the number of cells isolated from the scaffold are also characterized by a high degree of error that is associated with the loss of cells during the destruction of the scaffold. We describe in detail a method that allows the direct quantitation of cells within a scaffold. Modifications of the method make it possible both to analyze the proliferative activity of cells cultivated in a scaffold and to assess their viability and density distribution in the three-dimensional structure.•Direct rather than indirect analysis of the number of cells in the scaffold by counting the number of nuclei.•Carrying out research without destroying the scaffold structure.•Carrying out research without additional preliminary preparation of samples before staining.

13.
Polymers (Basel) ; 12(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143320

RESUMEN

The activity of stem cell processes is regulated by internal and external signals of the cell "niche". In general, the niche of stem cells can be represented as the microenvironment of the cells, providing a signal complex, determining the properties of the cells. At the same time, the "niche" concept implies feedback. Cells can modify their microenvironment, supporting homeostasis or remodeling the composition and structure of the extracellular matrix. To ensure the regenerative potential of tissue engineering products the "niche" concept should be taken into account. To investigate interactions in an experimental niche, an original hydrogel biopolymer scaffold with encapsulated mesenchymal adipose-derived stem cells (ASCs) was used in this study. The scaffold provides for cell adhesion, active cell growth, and proliferative activity. Cells cultured within a scaffold are distinguished by the presence of a developed cytoskeleton and they form a cellular network. ASCs cultured within a scaffold change their microenvironment by secreting VEGF-A and remodeling the scaffold structure. Scaffold biodegradation processes were evaluated after previous culturing of the ASCs in the scaffolds for periods of either 24 h or six days. The revealed differences confirmed that changes had occurred in the properties of scaffolds remodeled by cells during cultivation. The mechanisms of the identified changes and the possibility of considering the presented scaffold as an appropriate artificial niche for ASCs are discussed.

14.
Bioact Mater ; 4: 334-345, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720490

RESUMEN

At present there is a growing need for tissue engineering products, including the products of scaffold-technologies. Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration. This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis. Two differently originated collagens were used for the scaffold formation. During this work the structural and mechanical characteristics of the scaffold were studied. It was found that, depending on the origin of collagen, scaffolds possess differences in their structural and mechanical characteristics. Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells. Hence, scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA