Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Iran J Basic Med Sci ; 27(3): 304-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333752

RESUMEN

Objectives: The process of vascular formation, also known as angiogenesis, primarily relies on endothelial cell proliferation, migration, and invasion. In recent years, it has been discovered that synthetic cannabinoids (SCs) may potentially impact angiogenic processes within the body. We evaluated the impact of the synthetic cannabinoid (R)-5-Fluoro-ADB on the proliferation rate and angiogenesis in Human Cerebral Microvascular Endothelial Cells (hBMECs). Materials and Methods: hBMECs were treated with (R)-5-Fluoro-ADB and investigated for cell viability, migration rate, and tube-like structure formation. Furthermore, angiogenic-related proteins including Angopoitein-1 and -2, and Vascular Endothelial Growth Factors (VEGF) were examined on mRNA and protein levels. Results: The results showed a notable rise in the rate of proliferation (P-value<0.0001) of HBMECs induced by (R)-5-Fluoro-ADB. The angiogenic capacity of HBMECs was also enhanced between 0.001 µM to 1 µM (R)-5-Fluoro-ADB. Moreover, an increase in the levels of ANG-1, ANG-2, and VEGF mRNA and protein, as well as elevated phosphorylation rate of GSK-3ß, were observed across various concentrations of (R)-5-Fluoro-ADB. Conclusion: Our results suggest an innovative approach in pharmacology for addressing a range of conditions linked to angiogenesis. This approach involves precise targeting of both cannabinoid receptors type-1 and -2. To achieve this, specific agonists or antagonists of these receptors could be employed based on the particular characteristics of the diseases in question.

2.
Tissue Cell ; 88: 102327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493756

RESUMEN

BACKGROUND: Ulcerative colitis is a risk factor for colorectal carcinoma. Different mechanisms are related to colitis like apoptosis and hyperproliferation. Moringa oleifera leaves extract (MO) provides a promising option to overcome the risk. PURPOSE: To examine the colonic changes in a rat model of colitis induced by sodium nitrate (SN) and study the effects of MO. STUDY DESIGN: Eight adult male rats were allocated in each of the three group; control (distilled water), SN (100 mg/kg/day, orally via gastric gavage), and SN + MO (100 mg/kg/day, orally via gastric gavage). METHODS: Body weight was measured after the end of the experiment. Colonic homogenates were tested for levels of oxidative stress indicators. Immunohistochemistry for P53, PCNA and Ki-67 was performed. Fresh colon specimens were used for quantitative real-time PCR for assessment of P53, PCNA and Ki-67 gene expression. RESULTS: SN group revealed a significant decreased weight (p = 0.002). MDA and NO levels were higher with SN administration than with MO co-administration (p= 0.04, 0.01 respectively). GSH level was reduced in SN group (p = 0.02) and significantly increased with MO intake (p = 0.04). SN-induced colonic destructive changes were reversed with MO. P53, PCNA and Ki-67 levels of gene expression were reduced in SN + MO group than SN group (P = 0.007, 0.02, 0.001 respectively). CONCLUSION: MO protected the colonic mucosa against SN-induced changes regulating apoptosis, and cell proliferation.


Asunto(s)
Antígeno Ki-67 , Moringa oleifera , Nitratos , Extractos Vegetales , Hojas de la Planta , Antígeno Nuclear de Célula en Proliferación , Proteína p53 Supresora de Tumor , Animales , Moringa oleifera/química , Proteína p53 Supresora de Tumor/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Extractos Vegetales/farmacología , Masculino , Hojas de la Planta/química , Ratas , Nitratos/metabolismo , Biomarcadores/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Estrés Oxidativo/efectos de los fármacos
3.
Tissue Cell ; 88: 102420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795506

RESUMEN

Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Diabetes Mellitus Experimental , Losartán , Factor 2 Relacionado con NF-E2 , Médula Espinal , Animales , Médula Espinal/patología , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Factor 2 Relacionado con NF-E2/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Ratas , Masculino , Losartán/farmacología , Hemo-Oxigenasa 1/metabolismo , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratas Wistar , Apoptosis/efectos de los fármacos , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos
4.
Toxicol Res (Camb) ; 12(5): 796-806, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37915478

RESUMEN

Brain angiogenesis, the formation of new blood vessels from existing brain vasculature, has been previously associated with neural plasticity and addictive behaviors related to substances. Synthetic cannabinoids (SCs) have become increasingly popular due to their ability to mimic the effects of cannabis, offering high potency and easy accessibility. In the current study, we reveal that the SC 5F-MDMB-PICA, the most common SC in the United States in 2019, increases cell metabolic activity and promotes angiogenesis in human brain microvascular endothelial cells (HBMECs). First, we performed an MTT assay to evaluate the effects of 5F-MDMB-PICA treatment at various concentrations (0.0001 µM, 0.001 µM, 0.01 µM, 0.1 µM, and 1 µM) on HBMECs metabolic activity. The results demonstrated higher concentrations of the SC improved cell metabolic activity. Furthermore, 5F-MDMB-PICA treatment enhanced tube formation and migration of HBMECs in a dosage-dependent manner. Additionally, the mRNA, secreted protein, and intracellular protein levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2, which are involved in the regulation of angiogenesis, as well as the protein levels of cannabinoid receptor type-1, were all increased following treatment with 5F-MDMB-PICA. Notably, the phosphorylation levels at Serine 9 residue of glycogen synthase kinase-3ß were also increased in the 5F-MDMB-PICA treated HBMECs. Collectively, our findings demonstrate that 5F-MDMB-PICA can enhance angiogenesis in HBMECs, suggesting the significant role of angiogenesis in the response to SCs. Manipulating this interaction may pave the way for innovative treatments targeting SC addiction and angiogenesis-related conditions.

5.
Int Urol Nephrol ; 55(1): 129-139, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35817991

RESUMEN

BACKGROUND: Hemorrhagic cystitis often develops in patients treated with cyclophosphamide (CP). Vincamine (vinca alkaloid) is the source of the synthetic derivative vinpocetine (Vinpo). Worldwide, Vinpo is used as a cerebroprotective drug. As it has anti-oxidant, anti-thrombotic and anti-inflammatory effects but the power of Vinpo to prevent CP induced cystitis has not been studied. AIM OF STUDY: This research was planned to explore the effect of Vinpo (10-30 mg/kg, orally) administered 1 or 4 h before inducing cystitis by CP injection (300 mg/kg, i.p.) on the urinary bladder of mice. RESULTS: Administration of Vinpo 30 mg/kg, 4 h before CP injection ameliorated inflammatory markers. It reduced inducible nitric oxide synthase (iNOS), tumor necrosis factor- α (TNF-α), and BCL2 Associated X (Bax) expression in the bladder and increased the total antioxidant capacity level. Histological examination of the bladder has further supported these results. The present study suggests a protective effect of Vinpo (30 mg/kg, 4 h before CP injection) against CP-induced bladder inflammation. CONCLUSION: This proposes that Vinpo 30 mg/kg may become a promising pharmacological drug to prevent urinary adverse effects in patients treated with chemotherapy using CP.


Asunto(s)
Cistitis , Alcaloides de la Vinca , Ratones , Animales , Vejiga Urinaria/patología , Ciclofosfamida/efectos adversos , Estrés Oxidativo , Cistitis/inducido químicamente , Cistitis/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Alcaloides de la Vinca/farmacología , Alcaloides de la Vinca/uso terapéutico , Apoptosis
6.
Front Neuroanat ; 17: 1094301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968023

RESUMEN

Introduction: Diabetes is a global disease, commonly complicated by neuropathy. The spinal cord reacts to diabetes by neuronal apoptosis, microglial activation, and astrocytosis, with a disturbance in neuronal and glial Nuclear factor erythroid 2-related factor/Heme oxygenase-1 (Nrf2/HO-1) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling. Curcumin, a bioactive natural substance, showed neuroprotective role in many diseases. However, its role in the treatment of the diabetic central neuropathy of spinal cord and the underlying mechanisms still need clarification. The present study tried to evaluate the role of curcumin in diabetes-induced central neuropathy of the spinal cord in rats. Methods: Twenty rats were divided into three groups; group 1: a negative control group; group 2: received streptozotocin (STZ) to induce type I diabetes, and group 3: received STZ + Curcumin (150 mg/kg/day) for eight weeks. The spinal cords were examined for histopathological changes, and immunohistochemical staining for Glia fibrillary acidic protein (GFAP); an astrocyte marker, Ionized calcium-binding adaptor molecule 1 (Iba1), a microglial marker, neuronal nuclear protein (NeuN); a neuronal marker, caspase-3; an apoptosis marker, Nrf2/HO-1, NF-kB, and oxidative stress markers were assessed. Results: Curcumin could improve spinal cord changes, suppress the expression of Iba1, GFAP, caspase-3, and NF-kB, and could increase the expression of NeuN and restore the Nrf2/HO-1 signaling. Discussion: Curcumin could suppress diabetic spinal cord central neuropathy, glial activation, and neuronal apoptosis with the regulation of Nrf2/HO-1 and NF-kB signaling.

7.
Tissue Cell ; 84: 102192, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579617

RESUMEN

Aging is a highly complicated natural process. Brain aging is associated with remarkable neurodegenerative changes and oxidative damage. Whey protein (WP) has been mentioned to have an antioxidant property. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling pathway is an antioxidant defense system. Nrf2 activity declines with age so, its activation could be a promising therapeutic strategy for aging. This study aimed to explore the anti-aging role of WP against D-galactose (D-gal) induced age-related degenerative changes and oxidative damage in the prefrontal cortex (PFC) and investigate its underlying mechanisms. Forty adult male rats were divided into 4 groups; control, WP group received WP (28.77 mg/kg/day) by gastric tube on the 4th experimental week; D-gal (model group) received D-gal (300 mg/kg/day) intraperitoneally for 8 weeks and D-gal +WP group received WP on the 4th week of D-gal treatment. Specimens from PFC were obtained for biochemical, histological, immunohistochemical and western blot analysis. WP treatment in D-gal +WP group reduced lipid peroxidation, enhanced antioxidant enzyme activities, decreased advanced glycation end products level and improved the histological and ultrastructural alterations. Moreover, the number of neurons expressed the senescence marker; p21 and percentage area of the astrocytic marker; glial fibrillary acidic protein were significantly reduced. WP also enhanced Nrf2 pathway and its downstream targets; heme oxygenase-1 and NADPH quinone oxidoreductase 1. In conclusion WP alleviates the D-gal-induced PFC aging through activating Nrf2 pathway, reducing cell senescence and gliosis. So, it may be a potential therapeutic target to retard the aging process.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Ratas , Masculino , Animales , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/metabolismo , Envejecimiento/metabolismo , Estrés Oxidativo , Transducción de Señal , Corteza Prefrontal/metabolismo , Galactosa/farmacología
8.
Healthcare (Basel) ; 11(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37830731

RESUMEN

BACKGROUND: Lower urinary tract dysfunction (LUTD) is caused by neurogenic factors that could lead to permanent injury in affected patients, and therefore result in substantial annual healthcare expenses. LUTD is very prevalent in multiple sclerosis (MS) patients and has a drastic impact on their quality of life (QOL). This study aimed to assess the effect of LUTD on the QOL of Saudi MS patients. METHODS: A cross-sectional study was carried out in Saudi Arabia using a self-administered questionnaire that included the World Health Organization Quality of Life (WHOQOL-BREF) and LURN Symptom Index (LURN SI-29). Data were analyzed and presented as frequencies and percentages. RESULTS: There were 428 patients who participated in this study; 270 were females and 158 were males. Most of the patients received a low score in all sections of the LURN part of the questionnaire. The highest scores (urgent need to urinate and excessive urination at night) were recorded in the urgency domain (47.20 ± 36.88) rather than the nocturia domain (44.74 ± 32.91). Meanwhile, the lowest score (complete control of bladder) was recorded in the incontinence domain (22.80 ± 26.80). For the WHOQOL-BREF score, the highest score (more social stability) was in the social domain (65.07 ± 21.16 for females, 60.41 ± 21.54 for males), and the lowest score (less psychological stability) was in the psychological domain (46.36 ± 9.84 for females, 46.20 ± 10.03 for males). However, there was no significant association between the four domains of the WHOQOL-BREF and the gender of the MS patients. CONCLUSIONS: LUTD is significantly associated with a lowered quality of life. Therefore, patients are recommended to consult with and be evaluated by appropriately experienced healthcare providers and clinicians. This ensures that the patients receive the best advice, accurate and effective treatment, and long-term analysis that can lead to an improvement in their quality of life.

9.
Front Neurosci ; 17: 1267675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38323121

RESUMEN

Background: Ranolazine (Rn), an antianginal agent, acts in the central nervous system and has been used as a potential treatment agent for pain and epileptic disorders. Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and the leading factor in dementia in the elderly. Aim: We examined the impact of Rn on scopolamine (Sco)-induced dementia in rats. Methods: Thirty-two albino male rats were divided into four groups: control, Rn, Sco, and Rn + Sco. Results: A significant decrease in the escape latency in the Morris water maze test after pre-treatment with Rn explained better learning and memory in rats. Additionally, Rn significantly upregulated the activities of the antioxidant enzymes in the treated group compared to the Sco group but substantially reduced acetylcholinesterase activity levels in the hippocampus. Moreover, Rn dramatically reduced interleukin-1 ß (IL-1ß) and IL-6 and upregulated the gene expression of brain-derived neurotrophic factor (BDNF). Furthermore, in the Sco group, the hippocampal tissue's immunohistochemical reaction of Tau and glial factor activating protein (GFAP) was significantly increased in addition to the upregulation of the Caspase-3 gene expression, which was markedly improved by pre-treatment with Rn. The majority of pyramidal neurons had large vesicular nuclei with prominent nucleoli and appeared to be more or less normal, reflecting the all-beneficial effects of Rn when the hippocampal tissue was examined under a microscope. Conclusion: Our findings indicated that Rn, through its antioxidative, anti-inflammatory, and anti-apoptotic effects, as well as the control of the expression of GFAP, BDNF, and Tau proteins, has a novel neuroprotective impact against scopolamine-induced dementia in rats.

10.
Front Mol Biosci ; 10: 1306523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38357327

RESUMEN

Background: High-fat diet-induced obesity is linked to suppression of aquaporins (AQPs) expression in different tissues. Both vitamin D and intermittent fasting were identified to enhance AQPs expression. In the urinary bladder, AQP-1 and AQP-3 mRNA transcripts were identified. Vitamin D has an impact on a variety of genes that encode proteins that control cell proliferation, differentiation, and death. Aim: To assess potential benefits of vitamin D and intermittent fasting (IF) and to explore alterations to the urinary bladder triggered by high-fat diet (HFD) in a rat model of obesity. Methods: Each of the 4 groups contained six adult male albino rats; control: a standard rodent chew for 12 weeks, HFD: HFD and fructose were administered orally via gastric gavage for 12 weeks, and vitamin D: HFD and fructose were administered orally for 8 weeks, then 4 weeks of intraperitoneal injection of vitamin D (5 microns/Kg/2 days) and IF group: Received intraperitoneal injections of vitamin D (5 microns/Kg/2 days) for 4 weeks after consumption of HFD and fructose orally for 8 weeks. The serum lipid profile was conducted at end of the experiment. In the bladder homogenates, the levels of oxidative stress indicators were assessed. Quantitative real-time PCR was performed on recently collected bladder samples. AQP-1 and AQP-3 immunohistochemistry was done. Results: When compared to the HFD group, the vitamin D and IF groups both demonstrated a substantial improvement in histopathological, immunohistochemical, biochemical, and molecular markers. Conclusion: In all examined parameters, IF exceeded vitamin D as a preventive factor for the urinary bladder deterioration.

11.
Front Neuroanat ; 16: 1012422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312298

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual cognitive decline. Strong antioxidants that inhibit free radicals, such as polyphenols, reduce the likelihood of developing oxidative stress-related degenerative diseases such as AD. Naringin, a flavonoid found in citrus fruit shown to be neuroprotective, reduce oxidative damage and minimize histopathological changes caused by ischemic reperfusion, enhance the long-term memory in AD animal models. This work aimed to comprehend the role of naringin in the defense of the cerebellum against aluminum chloride (AlCl3)-induced AD in rats by investigating the behavioral, neurochemical, immunohistochemical, and molecular mechanisms that underpin its possible neuroprotective effects. Twenty-four adult albino rats were divided into four groups (n = 6/group): (i) Control (C) received saline per oral (p.o.), (ii) Naringin(N)-received naringin (100 mg/kg/d) p.o, (iii) AlCl3-recived AlCl3 (100 mg/kg/d) p.o and (iv) AlCl3 + Naringin (AlCl3 + N) received both AlCl3 and naringin p.o for 21 days. Behavioral tests showed an increase in the time to reach the platform in Morris water maze, indicating memory impairment in the AlCl3-treated group, but co-administration of naringin showed significant improvement. The Rotarod test demonstrated a decrease in muscle coordination in the AlCl3-treated group, while it was improved in the AlCl3 + N group. Neurochemical analysis of the hippocampus and cerebellum revealed that AlCl3 significantly increased lipid peroxidation and oxidative stress and decreased levels of reduced glutathione. Administration of naringin ameliorated these neurochemical changes via its antioxidant properties. Cerebellar immunohistochemical expression for microtubule assembly (tau protein) and oxidative stress (iNOS) increased in A1C13-treated group. On the other hand, the expression of the autophagic marker (LC3) in the cerebellum showed a marked decline in AlCl3-treated group. Western blot analysis confirmed the cerebellar immunohistochemical findings. Collectively, these findings suggested that naringin could contribute to the combat of oxidative and autophagic stress in the cerebellum of AlCl3-induced AD.

12.
Front Cell Neurosci ; 16: 967813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187296

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease. Treatment of PD is challenging, as current treatment strategies are only symptomatic and do not stop disease development. Recent studies reported neuroprotective effects of calcitriol in PD through its antioxidant and anti-inflammatory properties. The exact pathomechanisms of PD are not yet fully understood. So, investigation of different molecular pathways is challenging. Sirtuin-1 (Sirt1) modulates multiple physiological processes, including programmed cell death, DNA repair, and inflammation. Furthermore, defective autophagy is considered a key pathomechanism in PD as it eliminates protein aggregation and dysfunctional cell organelles. The present study investigated the involvement of autophagy and Sirt1/NF-κB molecular pathway in rotenone-induced PD and explored the protective and restorative effects of calcitriol through these mechanisms. Therefore, behavioral tests were used to test the effect of calcitriol on motor disability and equilibrium. Furthermore, the histological and neuronal architecture was assessed. The expression of genes encoding neuroinflammation and autophagy markers was determined by qPCR while their protein levels were determined by Western blot analysis and immune-histochemical staining. Our results indicate that behavioral impairments and dopaminergic neuron depletion in the rotenone-induced PD model were improved by calcitriol administration. Furthermore, calcitriol attenuated rotenone-induced neuroinflammation and autophagy dysfunction in PD rats through up-regulation of Sirt1 and LC3 and down-regulation of P62 and NF-κB expression levels. Thus, calcitriol could induce a neuro-protective and restorative effect in the rotenone-induced PD model by modulating autophagy and Sirt1/NF-κB pathway.

13.
Cells ; 10(9)2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34572126

RESUMEN

Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-ß1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-ß1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.


Asunto(s)
Autofagia , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/prevención & control , Células Madre Mesenquimatosas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Smad/metabolismo , Trasplante de Células Madre/métodos , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Antineoplásicos/toxicidad , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Cisplatino/toxicidad , Femenino , Masculino , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Proteínas Smad/genética , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA